Association of P16-RBSP3 inactivation with phosphorylated RB1 overexpression in basal–parabasal layers of normal cervix unchanged during CACX development

2016 ◽  
Vol 473 (19) ◽  
pp. 3221-3236 ◽  
Author(s):  
Chandraditya Chakraborty ◽  
Anirban Roychowdhury ◽  
Sudip Samadder ◽  
Anup Roy ◽  
Ranajit Kumar Mandal ◽  
...  

To understand the molecular mechanism of RB1 phosphorylation in basal–parabasal layers of normal cervix and during cervical cancer (CACX) development, we analyzed the alterations (expression/methylation/deletion/mutation) of RB1/phosphorylated RB1 (p-RB1) (ser807/811 and ser567) and two RB1 phosphorylation inhibitors, P16 and RBSP3, in disease-free normal cervical epithelium (n = 9), adjacent normal cervical epithelium of tumors (n = 70), cervical intraepithelial neoplasia (CIN; n = 28), CACX (n = 102) samples and two CACX cell lines. Immunohistochemical analysis revealed high/medium expression of RB1/p-RB1 (ser807/811 and ser567) and low expression of P16 and RBSP3 in proliferating basal–parabasal layers of majority of normal cervical epitheliums, irrespective of HPV16 infection. Interestingly, 35–52% samples showed high/medium expression of P16 in basal–parabasal layers of normal and had significant association with deleterious non-synonimous SNPs of P16. Methylation of P16 and RBSP3 in basal–parabasal layers of normal cervix (32 and 62%, respectively) showed concordance with their respective expressions in basal–parabasal layers. The methylation frequency of P16 and RBSP3 in basal–parabasal layers of normal did not change significantly in CIN and CACX. The deletion frequency of P16 and RB1 increased significantly with CACX progression. While, deletion of RBSP3 was high in CIN and comparable during CACX progression. P16 showed scattered and infrequent mutation in CACX. The alteration of P16 and RBSP3 was synergistic and showed association with overexpression of p-RB1 in tumors and associated with poor prognosis of patients. Thus, our data suggest that overexpression of p-RB1 in basal–parabasal layers of normal cervical epithelium was due to methylation/low functional-linked non-synonimous SNPs of P16 and RBSP3. This pattern was maintained during cervical carcinogenesis by additional deletion/mutation.

2018 ◽  
Vol 475 (10) ◽  
pp. 1793-1806 ◽  
Author(s):  
Chandraditya Chakraborty ◽  
Sraboni Mitra ◽  
Anirban Roychowdhury ◽  
Sudip Samadder ◽  
Sankhadeep Dutta ◽  
...  

To understand the mechanism of cellular stress in basal–parabasal layers of normal cervical epithelium and during different stages of cervical carcinoma, we analyzed the alterations (expression/methylation/copy number variation/mutation) of HIF-1α and its associated genes LIMD1, VHL and VEGF in disease-free normal cervix (n = 9), adjacent normal cervix of tumors (n = 70), cervical intraepithelial neoplasia (CIN; n = 32), cancer of uterine cervix (CACX; n = 174) samples and two CACX cell lines. In basal–parabasal layers of normal cervical epithelium, LIMD1 showed high protein expression, while low protein expression of VHL was concordant with high expression of HIF-1α and VEGF irrespective of HPV-16 (human papillomavirus 16) infection. This was in concordance with the low promoter methylation of LIMD1 and high in VHL in the basal–parabasal layers of normal cervix. LIMD1 expression was significantly reduced while VHL expression was unchanged during different stages of cervical carcinoma. This was in concordance with their frequent methylation during different stages of this tumor. In different stages of cervical carcinoma, the expression pattern of HIF-1α and VEGF was high as seen in basal–parabasal layers and inversely correlated with the expression of LIMD1 and VHL. This was validated by demethylation experiments using 5-aza-2′-deoxycytidine in CACX cell lines. Additional deletion of LIMD1 and VHL in CIN/CACX provided an additional growth advantage during cervical carcinogenesis through reduced expression of genes and associated with poor prognosis of patients. Our data showed that overexpression of HIF-1α and its target gene VEGF in the basal–parabasal layers of normal cervix was due to frequent inactivation of VHL by its promoter methylation. This profile was maintained during different stages of cervical carcinoma with additional methylation/deletion of VHL and LIMD1.


Author(s):  
Kun Lee ◽  
Jingyi Si ◽  
Ricai Han ◽  
Wei Zhang ◽  
Bingbing Tan ◽  
...  

There are more supports for the view that human papillomavirus (HPV) infection might be an etiological factor in the development of cervical cancer when the association of persistent condylomata is considered. Biopsies from 318 cases with squamous cell carcinoma of uterine cervix, 48 with cervical and vulvar condylomata, 14 with cervical intraepithelial neoplasia (CIN), 34 with chronic cervicitis and 24 normal cervical epithelium were collected from 5 geographic regions of China with different cervical cancer mortalities. All specimens were prepared for Dot blot, Southern blot and in situ DNA-DNA hybridizations by using HPV-11, 16, 18 DNA labelled with 32P and 3H as probes to detect viral homologous sequences in samples. Among them, 32 cases with cervical cancer, 27 with condyloma and 10 normal cervical epitheliums were randomly chosen for comparative EM observation. The results showed that: 1), 192 out of 318 (60.4%) cases of cervical cancer were positive for HPV-16 DNA probe (Table I)


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3608
Author(s):  
Liliana Rounds ◽  
Ray B. Nagle ◽  
Andrea Muranyi ◽  
Jana Jandova ◽  
Scott Gill ◽  
...  

Glyoxalase 1 (GLO1) is an enzyme involved in the detoxification of methylglyoxal (MG), a reactive oncometabolite formed in the context of energy metabolism as a result of high glycolytic flux. Prior clinical evidence has documented GLO1 upregulation in various tumor types including prostate cancer (PCa). However, GLO1 expression has not been explored in the context of PCa progression with a focus on high-grade prostatic intraepithelial neoplasia (HGPIN), a frequent precursor to invasive cancer. Here, we have evaluated GLO1 expression by immunohistochemistry in archival tumor samples from 187 PCa patients (stage 2 and 3). Immunohistochemical analysis revealed GLO1 upregulation during tumor progression, observable in HGPIN and PCa versus normal prostatic tissue. GLO1 upregulation was identified as a novel hallmark of HGPIN lesions, displaying the highest staining intensity in all clinical patient specimens. GLO1 expression correlated with intermediate–high risk Gleason grade but not with patient age, biochemical recurrence, or pathological stage. Our data identify upregulated GLO1 expression as a molecular hallmark of HGPIN lesions detectable by immunohistochemical analysis. Since current pathological assessment of HGPIN status solely depends on morphological features, GLO1 may serve as a novel diagnostic marker that identifies this precancerous lesion.


Sign in / Sign up

Export Citation Format

Share Document