Multi-functional regulator MapZ controls both positioning and timing of FtsZ polymerization

2019 ◽  
Vol 476 (10) ◽  
pp. 1433-1444 ◽  
Author(s):  
Zhang Feng ◽  
Jiahai Zhang ◽  
Da Xu ◽  
Yong-Liang Jiang ◽  
Cong-Zhao Zhou ◽  
...  

AbstractThe tubulin-like GTPase protein FtsZ, which forms a discontinuous cytokinetic ring at mid-cell, is a central player to recruit the division machinery to orchestrate cell division. To guarantee the production of two identical daughter cells, the assembly of FtsZ, namely Z-ring, and its precise positioning should be finely regulated. In Streptococcus pneumoniae, the positioning of Z-ring at the division site is mediated by a bitopic membrane protein MapZ (mid-cell-anchored protein Z) through direct interactions between the intracellular domain (termed MapZ-N (the intracellular domain of MapZ)) and FtsZ. Using nuclear magnetic resonance titration experiments, we clearly assigned the key residues involved in the interactions. In the presence of MapZ-N, FtsZ gains a shortened activation delay, a lower critical concentration for polymerization and a higher cooperativity towards GTP hydrolysis. On the other hand, MapZ-N antagonizes the lateral interactions of single-stranded filaments of FtsZ, thus slows down the formation of highly bundled FtsZ polymers and eventually maintains FtsZ at a dynamic state. Altogether, we conclude that MapZ is not only an accelerator to trigger the polymerization of FtsZ, but also a brake to tune the velocity to form the end-product, FtsZ bundles. These findings suggest that MapZ is a multi-functional regulator towards FtsZ that controls both the precise positioning and proper timing of FtsZ polymerization.

mBio ◽  
2014 ◽  
Vol 6 (1) ◽  
Author(s):  
Nela Holečková ◽  
Linda Doubravová ◽  
Orietta Massidda ◽  
Virginie Molle ◽  
Karolína Buriánková ◽  
...  

ABSTRACTHow bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement inStreptococcus pneumoniae. We show thatlocZis not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division.IMPORTANCEBacterial cell division is a highly ordered process regulated in time and space. Recently, we reported that the Ser/Thr protein kinase StkP regulates cell division in Streptococcus pneumoniae, through phosphorylation of several key proteins. Here, we characterized one of the StkP substrates, Spr0334, which we named LocZ. We show that LocZ is a new cell division protein important for proper septum placement and likely functions as a marker of the cell division site. Consistently, LocZ supports proper Z-ring positioning at midcell. LocZ is conserved only among streptococci, lactococci, and enterococci, which lack homologues of the Min and nucleoid occlusion effectors, indicating that these bacteria adapted a unique mechanism to find their middle, reflecting their specific shape and symmetry.


2020 ◽  
Vol 49 (1) ◽  
pp. 309-341 ◽  
Author(s):  
Ryan McQuillen ◽  
Jie Xiao

The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis–dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape–determining actin homolog MreB in cell elongation.


2013 ◽  
Vol 288 (38) ◽  
pp. 27358-27365 ◽  
Author(s):  
Rubén Ahijado-Guzmán ◽  
Carlos Alfonso ◽  
Belén Reija ◽  
Estefanía Salvarelli ◽  
Jesús Mingorance ◽  
...  

The influence of potassium content (at neutral pH and millimolar Mg2+) on the size distribution of FtsZ polymers formed in the presence of constantly replenished GTP under steady-state conditions was studied by a combination of biophysical methods. The size of the GTP-FtsZ polymers decreased with lower potassium concentration, in contrast with the increase in the mass of the GDP-FtsZ oligomers, whereas no effect was observed on FtsZ GTPase activity and critical concentration of polymerization. Remarkably, the concerted formation of a narrow size distribution of GTP-FtsZ polymers previously observed at high salt concentration was maintained in all KCl concentrations tested. Polymers induced with guanosine 5′-(α,β-methylene)triphosphate, a slowly hydrolyzable analog of GTP, became larger and polydisperse as the potassium concentration was decreased. Our results suggest that the potassium dependence of the GTP-FtsZ polymer size may be related to changes in the subunit turnover rate that are independent of the GTP hydrolysis rate. The formation of a narrow size distribution of FtsZ polymers under very different solution conditions indicates that it is an inherent feature of FtsZ, not observed in other filament-forming proteins, with potential implications in the structural organization of the functional Z-ring.


2017 ◽  
Author(s):  
César Díaz-Celis ◽  
Viviana I. Risca ◽  
Felipe Hurtado ◽  
Jessica K. Polka ◽  
Scott D. Hansen ◽  
...  

AbstractBacteria of the genusProsthecobacterexpress homologs of eukaryotic α-and β-tubulin, called BtubA and BtubB, that have been observed to assemble into bacterial microtubules (bMTs). ThebtubABgenes likely entered theProsthecobacterlineage via horizontal gene transfer and may derive from an early ancestor of the modern eukaryotic microtubule (MT). Previous biochemical studies revealed that BtubA/B polymerization is GTP-dependent and reversible and that BtubA/B folding does not require chaperones. To better understand bMT behavior and gain insight into the evolution of microtubule dynamics, we characterizedin vitrobMT assembly using a combination of polymerization kinetics assays, and microscopy. Like eukaryotic microtubules, bMTs exhibit polarized growth with different assembly rates at each end. GTP hydrolysis stimulated by bMT polymerization drives a stochastic mechanism of bMT disassembly that occurs via polymer breakage. We also observed treadmilling (continuous addition and loss of subunits at opposite ends) of bMT fragments. Unlike MTs, polymerization of bMTs requires KCl, which reduces the critical concentration for BtubA/B assembly and induces bMTs to form stable mixed-orientation bundles in the absence of any additional bMT-binding proteins. Our results suggest that at potassium concentrations resembling that inside the cytoplasm ofProsthecobacter, bMT stabilization through self-association may be a default behavior. The complex dynamics we observe in both stabilized and unstabilized bMTs may reflect common properties of an ancestral eukaryotic tubulin polymer.ImportanceMicrotubules are polymers within all eukaryotic cells that perform critical functions: they segregate chromosomes in cell division, organize intracellular transport by serving as tracks for molecular motors, and support the flagella that allow sperm to swim. These functions rely on microtubules remarkable range of tunable dynamic behaviors. Recently discovered bacterial microtubules composed of an evolutionarily related protein are evolved from a missing link in microtubule evolution, the ancestral eukaryotic tubulin polymer. Using microscopy and biochemical approaches to characterize bacterial microtubules, we observed that they exhibit complex and structurally polarized dynamic behavior like eukaryotic microtubules, but differ in how they self-associate into bundles and become destabilized. Our results demonstrate the diversity of mechanisms that microtubule-like filaments employ to promote filament dynamics and monomer turnover.


2010 ◽  
Vol 192 (16) ◽  
pp. 4134-4142 ◽  
Author(s):  
Jennifer R. Juarez ◽  
William Margolin

ABSTRACT The Min system regulates the positioning of the cell division site in many bacteria. In Escherichia coli, MinD migrates rapidly from one cell pole to the other. In conjunction with MinC, MinD helps to prevent unwanted FtsZ rings from assembling at the poles and to stabilize their positioning at midcell. Using time-lapse microscopy of growing and dividing cells expressing a gfp-minD fusion, we show that green fluorescent protein (GFP)-MinD often paused at midcell in addition to at the poles, and the frequency of midcell pausing increased as cells grew longer and cell division approached. At later stages of septum formation, GFP-MinD often paused specifically on only one side of the septum, followed by migration to the other side of the septum or to a cell pole. About the time of septum closure, this irregular pattern often switched to a transient double pole-to-pole oscillation in the daughter cells, which ultimately became a stable double oscillation. The splitting of a single MinD zone into two depends on the developing septum and is a potential mechanism to explain how MinD is distributed equitably to both daughter cells. Septal pausing of GFP-MinD did not require MinC, suggesting that MinC-FtsZ interactions do not drive MinD-septal interactions, and instead MinD recognizes a specific geometric, lipid, and/or protein target at the developing septum. Finally, we observed regular end-to-end oscillation over very short distances along the long axes of minicells, supporting the importance of geometry in MinD localization.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Begoña Monterroso ◽  
Silvia Zorrilla ◽  
Marta Sobrinos-Sanguino ◽  
Miguel Ángel Robles-Ramos ◽  
Carlos Alfonso ◽  
...  

ABSTRACTDivision ring formation at midcell is controlled by various mechanisms inEscherichia coli, one of them being the linkage between the chromosomal Ter macrodomain and the Z-ring mediated by MatP, a DNA binding protein that organizes this macrodomain and contributes to the prevention of premature chromosome segregation. Here we show that, during cell division, just before splitting the daughter cells, MatP seems to localize close to the cytoplasmic membrane, suggesting that this protein might interact with lipids. To test this hypothesis, we investigated MatP interaction with lipidsin vitro. We found that, when encapsulated inside vesicles and microdroplets generated by microfluidics, MatP accumulates at phospholipid bilayers and monolayers matching the lipid composition in theE. coliinner membrane. MatP binding to lipids was independently confirmed using lipid-coated microbeads and biolayer interferometry assays, which suggested that the recognition is mainly hydrophobic. Interaction of MatP with the lipid membranes also occurs in the presence of the DNA sequences specifically targeted by the protein, but there is no evidence of ternary membrane/protein/DNA complexes. We propose that the association of MatP with lipids may modulate its spatiotemporal localization and its recognition of other ligands.IMPORTANCEThe division of anE. colicell into two daughter cells with equal genomic information and similar size requires duplication and segregation of the chromosome and subsequent scission of the envelope by a protein ring, the Z-ring. MatP is a DNA binding protein that contributes both to the positioning of the Z-ring at midcell and the temporal control of nucleoid segregation. Our integratedin vivoandin vitroanalysis provides evidence that MatP can interact with lipid membranes reproducing the phospholipid mixture in theE. coliinner membrane, without concomitant recruitment of the short DNA sequences specifically targeted by MatP. This observation strongly suggests that the membrane may play a role in the regulation of the function and localization of MatP, which could be relevant for the coordination of the two fundamental processes in which this protein participates, nucleoid segregation and cell division.


2008 ◽  
Vol 19 (3) ◽  
pp. 1125-1138 ◽  
Author(s):  
Aleksandar Vjestica ◽  
Xin-Zi Tang ◽  
Snezhana Oliferenko

The ultimate goal of cytokinesis is to establish a membrane barrier between daughter cells. The fission yeast Schizosaccharomyces pombe utilizes an actomyosin-based division ring that is thought to provide physical force for the plasma membrane invagination. Ring constriction occurs concomitantly with the assembly of a division septum that is eventually cleaved. Membrane trafficking events such as targeting of secretory vesicles to the division site require a functional actomyosin ring suggesting that it serves as a spatial landmark. However, the extent of polarization of the secretion apparatus to the division site is presently unknown. We performed a survey of dynamics of several fluorophore-tagged proteins that served as markers for various compartments of the secretory pathway. These included markers for the endoplasmic reticulum, the COPII sites, and the early and late Golgi. The secretion machinery exhibited a marked polarization to the division site. Specifically, we observed an enrichment of the transitional endoplasmic reticulum (tER) accompanied by Golgi cisternae biogenesis. These processes required actomyosin ring assembly and the function of the EFC-domain protein Cdc15p. Cdc15p overexpression was sufficient to induce tER polarization in interphase. Thus, fission yeast polarizes its entire secretory machinery to the cell division site by utilizing molecular cues provided by the actomyosin ring.


2004 ◽  
Vol 186 (12) ◽  
pp. 3951-3959 ◽  
Author(s):  
Qin Sun ◽  
William Margolin

ABSTRACT In Escherichia coli, assembly of the FtsZ ring (Z ring) at the cell division site is negatively regulated by the nucleoid in a phenomenon called nucleoid occlusion (NO). Previous studies have indicated that chromosome packing plays a role in NO, as mukB mutants grown in rich medium often exhibit FtsZ rings on top of diffuse, unsegregated nucleoids. To address the potential role of overall nucleoid structure on NO, we investigated the effects of disrupting chromosome structure on Z-ring positioning. We found that NO was mostly normal in cells with inactivated DNA gyrase or in mukB-null mutants lacking topA, although some suppression of NO was evident in the latter case. Previous reports suggesting that transcription, translation, and membrane insertion of proteins (“transertion”) influence nucleoid structure prompted us to investigate whether disruption of these activities had effects on NO. Blocking transcription caused nucleoids to become diffuse, and FtsZ relocalized to multiple bands on top of these nucleoids, biased towards midcell. This suggested that these diffuse nucleoids were defective in NO. Blocking translation with chloramphenicol caused characteristic nucleoid compaction, but FtsZ rarely assembled on top of these centrally positioned nucleoids. This suggested that NO remained active upon translation inhibition. Blocking protein secretion by thermoinduction of a secA(Ts) strain caused a chromosome segregation defect similar to that in parC mutants, and NO was active. Although indirect effects are certainly possible with these experiments, the above data suggest that optimum NO activity may require specific organization and structure of the nucleoid.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56665 ◽  
Author(s):  
Wing-Cheong Lo ◽  
Mid Eum Lee ◽  
Monisha Narayan ◽  
Ching-Shan Chou ◽  
Hay-Oak Park

2004 ◽  
Vol 186 (17) ◽  
pp. 5926-5932 ◽  
Author(s):  
Kuei-Min Chung ◽  
Hsin-Hsien Hsu ◽  
Suresh Govindan ◽  
Ban-Yang Chang

ABSTRACT The EzrA protein of Bacillus subtilis is a negative regulator for FtsZ (Z)-ring formation. It is able to modulate the frequency and position of Z-ring formation during cell division. The loss of this protein results in cells with multiple Z rings located at polar as well as medial sites; it also lowers the critical concentration of FtsZ required for ring formation (P. A. Levin, I. G. Kurster, and A. D. Grossman, Proc. Natl. Acad. Sci. USA 96:9642-9647, 1999). We have studied the regulation of ezrA expression during the growth of B. subtilis and its effects on the intracellular level of EzrA as well as the cell length of B. subtilis. With the aid of promoter probing, primer extension, in vitro transcription, and Western blotting analyses, two overlapping σA-type promoters, P1 and P2, located about 100 bp upstream of the initiation codon of ezrA, have been identified. P1, supposed to be an extended −10 promoter, was responsible for most of the ezrA expression during the growth of B. subtilis. Disruption of this promoter reduced the intracellular level of EzrA very significantly compared with disruption of P2. Moreover, deletion of both promoters completely abolished EzrA in B. subtilis. More importantly, the cell length and percentage of filamentous cells of B. subtilis were significantly increased by disruption of the promoter(s). Thus, EzrA is required for efficient cell division during the growth of B. subtilis, despite serving as a negative regulator for Z-ring formation.


Sign in / Sign up

Export Citation Format

Share Document