Biochemical characterization of biliverdins IXβ/δ generated by a selective heme oxygenase

2020 ◽  
Vol 477 (3) ◽  
pp. 601-614
Author(s):  
Beibei Zhang ◽  
Natasha M. Nesbitt ◽  
Pedro José Barbosa Pereira ◽  
Wadie F. Bahou

The pro-oxidant effect of free heme (Fe2+-protoporphyrin IX) is neutralized by phylogenetically-conserved heme oxygenases (HMOX) that generate carbon monoxide, free ferrous iron, and biliverdin (BV) tetrapyrrole(s), with downstream BV reduction by non-redundant NADPH-dependent BV reductases (BLVRA and BLVRB) that retain isomer-restricted functional activity for bilirubin (BR) generation. Regioselectivity for the heme α-meso carbon resulting in predominant BV IXα generation is a defining characteristic of canonical HMOXs, thereby limiting generation and availability of BVs IXβ, IXδ, and IXγ as BLVRB substrates. We have now exploited the unique capacity of the Pseudomonas aeruginosa (P. aeruginosa) hemO/pigA gene for focused generation of isomeric BVs (IXβ and IXδ). A scalable system followed by isomeric separation yielded highly pure samples with predicted hydrogen-bonded structure(s) as documented by 1H NMR spectroscopy. Detailed kinetic studies established near-identical activity of BV IXβ and BV IXδ as BLVRB-selective substrates, with confirmation of an ordered sequential mechanism of BR/NADP+ dissociation. Halogenated xanthene-based compounds previously identified as BLVRB-targeted flavin reductase inhibitors displayed comparable inhibition parameters using BV IXβ as substrate, documenting common structural features of the cofactor/substrate-binding pocket. These data provide further insights into structure/activity mechanisms of isomeric BVs as BLVRB substrates, with potential applicability to further dissect redox-regulated functions in cytoprotection and hematopoiesis.

2021 ◽  
Vol 9 (11) ◽  
pp. 2318
Author(s):  
Dennis Winkler ◽  
Sabrina Gfrerer ◽  
Johannes Gescher

Despite several discoveries in recent years, the physiology of acidophilic Micrarchaeota, such as “Candidatus Micrarchaeum harzensis A_DKE”, remains largely enigmatic, as they highly express numerous genes encoding hypothetical proteins. Due to a lacking genetic system, it is difficult to elucidate the biological function of the corresponding proteins and heterologous expression is required. In order to prove the viability of this approach, A_DKE’s isocitrate dehydrogenase (MhIDH) was recombinantly produced in Escherichia coli and purified to electrophoretic homogeneity for biochemical characterization. MhIDH showed optimal activity around pH 8 and appeared to be specific for NADP+ yet promiscuous regarding divalent cations as cofactors. Kinetic studies showed KM-values of 53.03 ± 5.63 µM and 1.94 ± 0.12 mM and kcat-values of 38.48 ± 1.62 and 43.99 ± 1.46 s−1 resulting in kcat/KM-values of 725 ± 107.62 and 22.69 ± 2.15 mM−1 s−1 for DL-isocitrate and NADP+, respectively. MhIDH’s exceptionally low affinity for NADP+, potentially limiting its reaction rate, can likely be attributed to the presence of a proline residue in the NADP+ binding pocket, which might cause a decrease in hydrogen bonding of the cofactor and a distortion of local secondary structure.


2019 ◽  
Vol 26 (10) ◽  
pp. 743-750 ◽  
Author(s):  
Remya Radha ◽  
Sathyanarayana N. Gummadi

Background:pH is one of the decisive macromolecular properties of proteins that significantly affects enzyme structure, stability and reaction rate. Change in pH may protonate or deprotonate the side group of aminoacid residues in the protein, thereby resulting in changes in chemical and structural features. Hence studies on the kinetics of enzyme deactivation by pH are important for assessing the bio-functionality of industrial enzymes. L-asparaginase is one such important enzyme that has potent applications in cancer therapy and food industry.Objective:The objective of the study is to understand and analyze the influence of pH on deactivation and stability of Vibrio cholerae L-asparaginase.Methods:Kinetic studies were conducted to analyze the effect of pH on stability and deactivation of Vibrio cholerae L-asparaginase. Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) studies have been carried out to understand the pH-dependent conformational changes in the secondary structure of V. cholerae L-asparaginase.Results:The enzyme was found to be least stable at extreme acidic conditions (pH< 4.5) and exhibited a gradual increase in melting temperature from 40 to 81 °C within pH range of 4.0 to 7.0. Thermodynamic properties of protein were estimated and at pH 7.0 the protein exhibited ΔG37of 26.31 kcal mole-1, ΔH of 204.27 kcal mole-1 and ΔS of 574.06 cal mole-1 K-1.Conclusion:The stability and thermodynamic analysis revealed that V. cholerae L-asparaginase was highly stable over a wide range of pH, with the highest stability in the pH range of 5.0–7.0.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yufei Han ◽  
Qian Zhuang ◽  
Bo Sun ◽  
Wenping Lv ◽  
Sheng Wang ◽  
...  

AbstractSteroid hormones are essential in stress response, immune system regulation, and reproduction in mammals. Steroids with 3-oxo-Δ4 structure, such as testosterone or progesterone, are catalyzed by steroid 5α-reductases (SRD5As) to generate their corresponding 3-oxo-5α steroids, which are essential for multiple physiological and pathological processes. SRD5A2 is already a target of clinically relevant drugs. However, the detailed mechanism of SRD5A-mediated reduction remains elusive. Here we report the crystal structure of PbSRD5A from Proteobacteria bacterium, a homolog of both SRD5A1 and SRD5A2, in complex with the cofactor NADPH at 2.0 Å resolution. PbSRD5A exists as a monomer comprised of seven transmembrane segments (TMs). The TM1-4 enclose a hydrophobic substrate binding cavity, whereas TM5-7 coordinate cofactor NADPH through extensive hydrogen bonds network. Homology-based structural models of HsSRD5A1 and -2, together with biochemical characterization, define the substrate binding pocket of SRD5As, explain the properties of disease-related mutants and provide an important framework for further understanding of the mechanism of NADPH mediated steroids 3-oxo-Δ4 reduction. Based on these analyses, the design of therapeutic molecules targeting SRD5As with improved specificity and therapeutic efficacy would be possible.


2006 ◽  
Vol 189 (1) ◽  
pp. 103-112 ◽  
Author(s):  
F Vilchis ◽  
L Ramos ◽  
C Timossi ◽  
B Chávez

Ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), the terminal enzyme of the haem biosynthetic pathway, catalyses the insertion of ferrous iron into protoporphyrin IX to form protohaem. The Syrian hamster Harderian gland (HG) is known for its ability to produce and accumulate large amounts of protoporphyrins. In this species, the female gland contains up to 120 times more porphyrin than the male gland. Data from biochemical studies suggest that this gland possesses the enzymatic complex for haem biosynthesis but lacks ferrochelatase activity. The abundance of intraglandular haem proteins does not support this idea. To gain more insight into this process, we isolated cDNA for ferrochelatase from hamster liver, using the 5′- and 3′- rapid amplification of complementary DNA ends (RACE), and investigated its expression in HG from males and females. The full-length cDNA comprises an open reading frame of 1269 bp encoding a polypeptide of 422 amino-acid residues. Hamster DNA sequence exhibits 92% identity to mouse and 87% identity to human sequences. The predicted hamster enzyme was shown to have structural features of mammalian ferrochelatase, including a putative NH2- terminal presequence, a central core of about 330 amino-acid residues and an extra 30–50-amino-acid stretch at the carboxyl-terminus. RNA blotting experiments indicated that this cDNA hybridized to a liver mRNA of about 2.1 kb, while a weak hybridization signal was observed with mRNA from HG preparations. RT–PCR assays confirmed the expression of specific transcripts in both tissues. Male glands contained approximately twofold more enzyme mRNA than female glands. Likewise, the intraglandular content of mRNA varied during the oestrous cycle, with the highest levels found in the oestrous phase. These cyclic variations were less evident in liver. Ovariectomy plus treatment with progesterone or 17β-oestradiol plus progesterone increased ferrochelatase mRNA of the gland. In HG of short- or long-term castrated males, the administration of testosterone did not affect the ferrochelatase mRNA concentration. Based on mRNA expression levels, we conclude that Harderian ferrochelatase may play an active role in maintaining the physiological pool of haem required for processing cytochromes and other glandular haem proteins. Likewise, the sex-steroid hormones appear to have only a modest influence upon Harderian ferrochelatase.


2021 ◽  
Author(s):  
Navid Bavi ◽  
Michael D Clark ◽  
Gustavo F Contreras ◽  
Rong Shen ◽  
Bharat Reddy ◽  
...  

The voltage-dependent motor protein, Prestin (SLC26A5) is responsible for the electromotive behavior of outer hair cells (OHCs). Here, we determined the structure of dolphin Prestin in complex with Cl- and the inhibitor Salicylate using single particle cryo-electron microscopy. These structures establish the specific structural features of mammalian Prestin and reveal small but significant differences with the transporter members of the SLC26 family of membrane proteins. Comparison with SLC26A9 point to conformational differences in the special relationship between the core and gate domains. Importantly, we highlight substantial alterations to the hydrophobic footprint of Prestin as it relates to the membrane, which point to a potential influence of Prestin on its surrounding lipid. The structure of Prestin bound to the inhibitor Salicylate confirms the nature of the anion binding pocket, formed by TM3 and TM10 in the Core domain and a set of anion coordinating residues which include Q97, F101, F137, S398 and R399. The presence of a well-defined density for Salycilate points to an inhibition mechanism based on competition for the anion-binding pocket of Prestin. These observations illuminate the structural basis of Prestin electromotility, a key component in the mammalian cochlear amplifier.


2010 ◽  
Vol 299 (1) ◽  
pp. C148-C154 ◽  
Author(s):  
F. Omodeo-Salè ◽  
L. Cortelezzi ◽  
Z. Vommaro ◽  
D. Scaccabarozzi ◽  
A. M. Dondorp

Severe Plasmodium falciparum malaria is associated with hypoargininemia, which contributes to impaired systemic and pulmonary nitric oxide (NO) production and endothelial dysfunction. Since intravascular hemolysis is an intrinsic feature of severe malaria, we investigated whether and by which mechanisms free heme [Fe(III)-protoporphyrin IX (FP)] might contribute to the dysregulation of l-arginine (l-Arg) metabolism and bioavailability. Carrier systems “y+” [or cationic amino acid transporter (CAT)] and “y+L” transport l-Arg into red blood cells (RBC), where it is hydrolyzed to ornithine and urea by arginase (isoform I) or converted to NO· and citrulline by endothelial nitric oxide synthase (eNOS). Our results show a significant and dose-dependent impairment of l-Arg transport into RBC pretreated with FP, with a strong inhibition of the system carrier y+L. Despite the impaired l-Arg influx, higher amounts of l-Arg-derived urea are produced by RBC preexposed to FP caused by activation of RBC arginase I. This activation appeared not to be mediated by oxidative modifications of the enzyme. We conclude that l-Arg transport across RBC membrane is impaired and arginase-mediated l-Arg consumption enhanced by free heme. This could contribute to reduced NO production in severe malaria.


2018 ◽  
Vol 293 (15) ◽  
pp. 5431-5446 ◽  
Author(s):  
Natasha M. Nesbitt ◽  
Xiliang Zheng ◽  
Zongdong Li ◽  
José A. Manso ◽  
Wan-Yi Yen ◽  
...  

Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 78 ◽  
Author(s):  
Juuli Raivola ◽  
Teemu Haikarainen ◽  
Olli Silvennoinen

The Janus kinase-signal transducer and activator of transcription protein (JAK-STAT) pathway mediates essential biological functions from immune responses to haematopoiesis. Deregulated JAK-STAT signaling causes myeloproliferative neoplasms, leukaemia, and lymphomas, as well as autoimmune diseases. Thereby JAKs have gained significant relevance as therapeutic targets. However, there is still a clinical need for better JAK inhibitors and novel strategies targeting regions outside the conserved kinase domain have gained interest. In-depth knowledge about the molecular details of JAK activation is required. For example, whether the function and regulation between receptors is conserved remains an open question. We used JAK-deficient cell-lines and structure-based mutagenesis to study the function of JAK1 and its pseudokinase domain (JH2) in cytokine signaling pathways that employ JAK1 with different JAK heterodimerization partner. In interleukin-2 (IL-2)-induced STAT5 activation JAK1 was dominant over JAK3 but in interferon-γ (IFNγ) and interferon-α (IFNα) signaling both JAK1 and heteromeric partner JAK2 or TYK2 were both indispensable for STAT1 activation. Moreover, IL-2 signaling was strictly dependent on both JAK1 JH1 and JH2 but in IFNγ signaling JAK1 JH2 rather than kinase activity was required for STAT1 activation. To investigate the regulatory function, we focused on two allosteric regions in JAK1 JH2, the ATP-binding pocket and the αC-helix. Mutating L633 at the αC reduced basal and cytokine induced activation of STAT in both JAK1 wild-type (WT) and constitutively activated mutant backgrounds. Moreover, biochemical characterization and comparison of JH2s let us depict differences in the JH2 ATP-binding and strengthen the hypothesis that de-stabilization of the domain disturbs the regulatory JH1-JH2 interaction. Collectively, our results bring mechanistic understanding about the function of JAK1 in different receptor complexes that likely have relevance for the design of specific JAK modulators.


2019 ◽  
Vol 20 (6) ◽  
pp. 1444 ◽  
Author(s):  
Soria Iatmanen-Harbi ◽  
lucile Senicourt ◽  
Vassilios Papadopoulos ◽  
Olivier Lequin ◽  
Jean-Jacques Lacapere

The optimization of translocator protein (TSPO) ligands for Positron Emission Tomography as well as for the modulation of neurosteroids is a critical necessity for the development of TSPO-based diagnostics and therapeutics of neuropsychiatrics and neurodegenerative disorders. Structural hints on the interaction site and ligand binding mechanism are essential for the development of efficient TSPO ligands. Recently published atomic structures of recombinant mammalian and bacterial TSPO1, bound with either the high-affinity drug ligand PK 11195 or protoporphyrin IX, have revealed the membrane protein topology and the ligand binding pocket. The ligand is surrounded by amino acids from the five transmembrane helices as well as the cytosolic loops. However, the precise mechanism of ligand binding remains unknown. Previous biochemical studies had suggested that ligand selectivity and binding was governed by these loops. We performed site-directed mutagenesis to further test this hypothesis and measured the binding affinities. We show that aromatic residues (Y34 and F100) from the cytosolic loops contribute to PK 11195 access to its binding site. Limited proteolytic digestion, circular dichroism and solution two-dimensional (2-D) NMR using selective amino acid labelling provide information on the intramolecular flexibility and conformational changes in the TSPO structure upon PK 11195 binding. We also discuss the differences in the PK 11195 binding affinities and the primary structure between TSPO (TSPO1) and its paralogous gene product TSPO2.


Sign in / Sign up

Export Citation Format

Share Document