immune system regulation
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 4)

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 152
Author(s):  
Marco Ugo Andrea Sartorio ◽  
Erica Pendezza ◽  
Serena Coppola ◽  
Lorella Paparo ◽  
Enza D'Auria ◽  
...  

Polyunsaturated fatty acids (PUFAs) are involved both in immune system regulation and inflammation. In particular, within the PUFAs category, omega-3 (ω-3) may reduce inflammation, whereas omega-6 (ω-6) PUFAs are generally considered to have a proinflammatory effect. Recent evidence highlights an imbalance in the ω-3: ω-6 ratio with an increased intake of ω-6, as a consequence of the shift towards a westernized diet. In critical age groups such as infants, toddlers and young children, as well as pregnant and lactating women or fish allergic patients, ω-3 intake may be inadequate. This review aims to discuss the potential beneficial effects of PUFAs on pediatric food allergy prevention and treatment, both at prenatal and postnatal ages. Data from preclinical studies with PUFAs supplementation show encouraging effects in suppressing allergic response. Clinical studies results are still conflicting about the best timing and dosages of supplementation and which individuals are most likely to benefit; therefore, it is still not possible to draw firm conclusions. With regard to food-allergic children, it is still debated whether PUFAs could slow disease progression or not, since consistent data are lacking. In conclusion, more data on the effects of ω-3 PUFAs supplementation alone or in combination with other nutrients are warranted, both in the general and food allergic population.


2021 ◽  
Vol 23 (1) ◽  
pp. 305
Author(s):  
Eunsoo Won ◽  
Kyoung-Sae Na ◽  
Yong-Ku Kim

Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.


2021 ◽  
Author(s):  
Mohammad Reza Naghdi ◽  
Samia Djerroud ◽  
Katia Smail ◽  
Jonathan Perreault

Study of pathogenesis in bacteria is important to find new drug targets to treat bacterial infections. Pathogenic bacteria, including opportunists, express numerous so-called virulence genes to escape the host natural defenses and immune system. Regulation of virulence genes is often required for bacteria to infect their host. Such regulation can be achieved by cis-regulatory RNAs, like the metabolite-binding riboswitches or thermoregulators. In spite of the hundreds of RNA families annotated as cis-regulatory, there are relatively few examples of non-coding RNAs (ncRNAs) in 5′-UnTranslated Regions (UTRs) of bacteria described to regulate downstream virulence genes. To reassess the potential roles of such regulatory elements in bacterial pathogenesis, we collected genes important for virulence from different databases and evaluated the presence of ncRNAs in their UTRs to highlight the potential role of this type of gene regulation for virulence and, at the same time, get insight on some of the physical and chemical triggers of virulence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrés López-Cortés ◽  
Estefanía Abarca ◽  
Leonardo Silva ◽  
Erick Velastegui ◽  
Ariana León-Sosa ◽  
...  

AbstractWound healing (WH) and cancer seem to share common cellular and molecular processes that could work in a tight balance to maintain tissue homeostasis or, when unregulated, drive tumor progression. The “Cancer Hallmarks” comprise crucial biological properties that mediate the advancement of the disease and affect patient prognosis. These hallmarks have been proposed to overlap with essential features of the WH process. However, common hallmarks and proteins actively participating in both processes have yet to be described. In this work we identify 21 WH proteins strongly linked with solid tumors by integrated TCGA Pan-Cancer and multi-omics analyses. These proteins were associated with eight of the ten described cancer hallmarks, especially avoiding immune destruction. These results show that WH and cancer's common proteins are involved in the microenvironment modification of solid tissues and immune system regulation. This set of proteins, between WH and cancer, could represent key targets for developing therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Scavello ◽  
Angela Mutschler ◽  
Sophie Hellé ◽  
Francis Schneider ◽  
Sylvette Chasserot-Golaz ◽  
...  

AbstractChromogranin A (CgA) is the precursor of several antimicrobial peptides, such as Catestatin (Cts, bovine CgA344-364), initially described as a potent inhibitor of catecholamines. This peptide displays direct antimicrobial activities and contributes to immune system regulation. The aim of the present study is to investigate a designed peptide based on Cts to fight infections against superbugs and more particularly Staphylococcus aureus. In addition to Cateslytin (Ctl, bovine CgA344-358), the active domain of Catestatin, several peptides including dimers, D-isomer and the new designed peptide DOPA-K-DOPA-K-DOPA-TLRGGE-RSMRLSFRARGYGFR (Dopa5T-Ctl) were prepared and tested. Cateslytin is resistant to bacterial degradation and does not induce bacterial resistance. The interaction of Catestatin with immune dermal cells (dendritic cells DC1a, dermal macrophages CD14 and macrophages) was analyzed by using confocal microscopy and cytokine release assay. The dimers and D-isomer of Ctl were tested against a large variety of bacteria showing the potent antibacterial activity of the D-isomer. The peptide Dopa5T-Ctl is able to induce the self-killing of S. aureus after release of Ctl by the endoprotease Glu-C produced by this pathogen. It permits localized on-demand delivery of the antimicrobial drug directly at the infectious site.


2021 ◽  
Vol 14 (6) ◽  
pp. 584
Author(s):  
Ioannis Temponeras ◽  
Lykourgos Chiniadis ◽  
Athanasios Papakyriakou ◽  
Efstratios Stratikos

Insulin-Regulated aminopeptidase (IRAP) is a zinc-dependent aminopeptidase with several important biological functions and is an emerging pharmaceutical target for cognitive enhancement and immune system regulation. Aiming to discover lead-like IRAP inhibitors with enhanced selectivity versus homologous enzymes, we targeted an allosteric site at the C-terminal domain pocket of IRAP. We compiled a library of 2.5 million commercially available compounds from the ZINC database, and performed molecular docking at the target pocket of IRAP and the corresponding pocket of the homologous endoplasmic reticulum aminopeptidase 1 (ERAP1). Of the top compounds that showed high selectivity, 305 were further analyzed by molecular dynamics simulations and free energy calculations, leading to the selection of 33 compounds for in vitro evaluation. Two orthogonal functional assays were employed: one using a small fluorogenic substrate and one following the degradation of oxytocin, a natural peptidic substrate of IRAP. In vitro evaluation suggested that several of the compounds tested can inhibit IRAP, but the inhibition profile was dependent on substrate size, consistent with the allosteric nature of the targeted site. Overall, our results describe several novel leads as IRAP inhibitors and suggest that the C-terminal domain pocket of IRAP is a promising target for developing highly selective IRAP inhibitors.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tiecheng Wang ◽  
Jiakang Jin ◽  
Chao Qian ◽  
Jianan Lou ◽  
Jinti Lin ◽  
...  

AbstractAs the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.


2021 ◽  
Vol 12 (1) ◽  
pp. 68-78
Author(s):  
Kurnia Putri Utami ◽  
Widya Wasityastuti ◽  
Marsetyawan HNE Soesatyo

An immune system recognizes and responds to antigens entering the body. Maintaining these roles, components of the immune system need energy obtained from nutrients such as carbohydrates, proteins, and lipids. This study reviews and discusses roles of lipids, particularly fatty acids, in regulations of the immune system. This study was conducted by conducting a literature study on published research articles written in English. The articles were obtained from PubMed and Google Scholar by using search keywords: lipid, fatty acids, immune, regulation, inflammation, and response. Lipids are a group of biomolecule compounds composed of carbon, oxygen, and hydrogen, and they are classified into simple, compound and complex lipids. Fatty acids are compound lipids that act as a main fuel for metabolism, an essential component for all membranes, and a gene regulator. Fatty acids have a modulating effect on immune cells, such as: acting as a host defence, activating the immune system, interacting with nuclear transcription factors, playing roles in inflammatory responses, promoting apoptosis, as well as influencing lymphocyte proliferation, cytokine production, and Natural Killer (NK) cell activities. However, the modulation of the immune system by lipids is influenced by various factors such as concentration and types of fatty acids, types of immune cells, and species. This study is suggested to provide an overview of beneficial roles of lipids in maintaining immunity.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 665
Author(s):  
Hudson Polonini ◽  
Any Elisa de Souza Schmidt Gonçalves ◽  
Eli Dijkers ◽  
Anderson de Oliveira Ferreira

Imuno TF® is a nutritional supplement composed of isolated transfer factors (TF) from porcine spleen. It is composed of a specific mixture of molecules that impact functions of the biological systems and historically is linked to the immune system regulation. In this study, we demonstrate for the first time its proteomic analysis, nutritional composition, and safety profile in terms of mutagenic potential and acute oral dose (LD50). The obtained analysis indicated the product is a complex set of oligo- and polypeptides constituted of 163 different peptides which can potentially act on multiple mechanisms on the immune system pathways. The chemical composition showed low fat and low sugar content, saturated fatty acids-free, and the presence of 10 vitamins and 11 minerals. No mutagenic effect was observed, and the LD50 was 5000 mg kg−1 body weight. This accounts for a safe product to be used by the oral route, with potential benefits for the immune system.


Sign in / Sign up

Export Citation Format

Share Document