scholarly journals Characterization of cathepsin S exosites that govern its elastolytic activity

2020 ◽  
Vol 477 (1) ◽  
pp. 227-242 ◽  
Author(s):  
Pierre-Marie Andrault ◽  
Preety Panwar ◽  
Dieter Brömme

We have previously determined that the elastolytic activities of cathepsins (Cat) K and V require two exosites sharing the same structural localization on both enzymes. The structural features involved in the elastolytic activity of CatS have not yet been identified. We first mutated the analogous CatK and V putative exosites of CatS into the elastolytically inactive CatL counterparts. The modification of the exosite 1 did not affect the elastase activity of CatS whilst mutation of the Y118 of exosite 2 decreased the cleavage of elastin by ∼70% without affecting the degradation of other macromolecular substrates (gelatin, thyroglobulin). T06, an ectosteric inhibitor that disrupt the elastolytic activity of CatK, blocked ∼80% of the elastolytic activity of CatS without blocking the cleavage of gelatin and thyroglobulin. Docking studies showed that T06 preferentially interacts with a binding site located on the Right domain of the enzyme, outside of the active site. The structural examination of this binding site showed that the loop spanning the L174N175G176K177 residues of CatS is considerably different from that of CatL. Mutation of this loop into the CatL-like equivalent decreased elastin degradation by ∼70% and adding the Y118 mutation brought down the loss of elastolysis to ∼80%. In addition, the Y118 mutation selectively reduced the cleavage of the basement membrane component laminin by ∼50%. In summary, our data show that the degradation of elastin by CatS requires two exosites where one of them is distinct from those of CatK and V whilst the cleavage of laminin requires only one exosite.

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Surinder S. Saini ◽  
N. K. Maiti ◽  
Azad K. Kaushik

Partial characterization of immunoglobulin Cµ gene of water buffalo (Bubalus bubalis) revealed high amino acid sequence identity with Cµ of cattle (94.28%) and sheep (91.71%). Four amino acid replacements (Met-301, Val-310, Asn-331, and Thr-432) in Cµ2, Cµ3, and Cµ4 of buffalo IgM are distinct, however. Unlike cattle, a codon deletion (GTG encoding valine at position 507 in cattle) and an insertion (GGC encoding glycine at position 532) occur in buffalo Cµ4. Three N-linked glycosylation (Asn-X-Thr/Ser) sites (one at position 325–327 in Cµ2; two at positions 372–374 and 394–396 in Cµ3) differentiate buffalo IgM from cattle and sheep. Similar to cattle, buffalo IgM has fewer prolines in Cµ2, which acts as hinge, which restricts Fab arm flexibility. Increased structural flexibility of the C1q-binding site in Cµ3 compensates for the rigid buffalo Cµ2 domain. Secondary structure of C1q-binding site is distinct in buffalo and cattle IgM where long alpha-helical structure is predominant that may be relevant to complement fixation function. Conserved protein motif “Thr-Cys-Thr-Val-Ala-His” provides protein signatures of C1q-binding region of ruminant species. The distinct structural features of C1q-binding site of buffalo and cattle IgM seem to be of functional significance and, therefore, useful in designing antibody based therapeutics.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Karthik Dhananjayan

ε-N-Acetylation of lysine residues (Kac) is one of the most frequently occurring posttranslational modifications (PTMs) which control gene transcription and a vast array of diverse cellular functions. Bromodomains are epigenetic regulators involved in posttranslational modification. In silico docking studies were carried out to evaluate the binding potential of selected rare flavonoids on to Nac binding site of BD1 domain of BRD4 BET family proteins. Rare flavonoids like 3-O-acetylpinobanksin, naringenin triacetate, and kaempferol tetraacetate were found to occupy the WPF shelf and at the same time they exhibited a better binding affinity with multiple crystal structures of first bromodomain BRD4 (BRD4 BD1) when compared with the known inhibitors.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
T. M. Weatherby ◽  
P.H. Lenz

Crustaceans, as well as other arthropods, are covered with sensory setae and hairs, including mechanoand chemosensory sensillae with a ciliary origin. Calanoid copepods are small planktonic crustaceans forming a major link in marine food webs. In conjunction with behavioral and physiological studies of the antennae of calanoids, we undertook the ultrastructural characterization of sensory setae on the antennae of Pleuromamma xiphias.Distal mechanoreceptive setae exhibit exceptional behavioral and physiological performance characteristics: high sensitivity (<10 nm displacements), fast reaction times (<1 msec latency) and phase locking to high frequencies (1-2 kHz). Unusual structural features of the mechanoreceptors are likely to be related to their physiological sensitivity. These features include a large number (up to 3000) of microtubules in each sensory cell dendrite, arising from or anchored to electron dense rods associated with the ciliary basal body microtubule doublets. The microtubules are arranged in a regular array, with bridges between and within rows. These bundles of microtubules extend far into each mechanoreceptive seta and terminate in a staggered fashion along the dendritic membrane, contacting a large membrane surface area and providing a large potential site of mechanotransduction.


Author(s):  
P.A. Crozier ◽  
M. Pan

Heterogeneous catalysts can be of varying complexity ranging from single or double phase systems to complicated mixtures of metals and oxides with additives to help promote chemical reactions, extend the life of the catalysts, prevent poisoning etc. Although catalysis occurs on the surface of most systems, detailed descriptions of the microstructure and chemistry of catalysts can be helpful for developing an understanding of the mechanism by which a catalyst facilitates a reaction. Recent years have seen continued development and improvement of various TEM, STEM and AEM techniques for yielding information on the structure and chemistry of catalysts on the nanometer scale. Here we review some quantitative approaches to catalyst characterization that have resulted from new developments in instrumentation.HREM has been used to examine structural features of catalysts often by employing profile imaging techniques to study atomic details on the surface. Digital recording techniques employing slow-scan CCD cameras have facilitated the use of low-dose imaging in zeolite structure analysis and electron crystallography. Fig. la shows a low-dose image from SSZ-33 zeolite revealing the presence of a stacking fault.


Author(s):  
Alexander Samokhvalov ◽  
Yan Liu ◽  
John Simon
Keyword(s):  

Author(s):  
Sowmya Suri ◽  
Rumana Waseem ◽  
Seshagiri Bandi ◽  
Sania Shaik

A 3D model of Cyclin-dependent kinase 5 (CDK5) (Accession Number: Q543f6) is generated based on crystal structure of P. falciparum PFPK5-indirubin-5-sulphonate ligand complex (PDB ID: 1V0O) at 2.30 Å resolution was used as template. Protein-ligand interaction studies were performed with flavonoids to explore structural features and binding mechanism of flavonoids as CDK5 (Cyclin-dependent kinase 5) inhibitors. The modelled structure was selected on the basis of least modeler objective function. The model was validated by PROCHECK. The predicted 3D model is reliable with 93.0% of amino acid residues in core region of the Ramachandran plot. Molecular docking studies with flavonoids viz., Diosmetin, Eriodictyol, Fortuneletin, Apigenin, Ayanin, Baicalein, Chrysoeriol and Chrysosplenol-D with modelled protein indicate that Diosmetin is the best inhibitor containing docking score of -8.23 kcal/mol. Cys83, Lys89, Asp84. The compound Diosmetin shows interactions with Cys83, Lys89, and Asp84.


2015 ◽  
Vol 15 (17) ◽  
pp. 1743-1749 ◽  
Author(s):  
Aurelio San-Martin ◽  
Viviana Donoso ◽  
Sergio Leiva ◽  
Mitchell Bacho ◽  
Solange Nunez ◽  
...  

Author(s):  
Trupti. S. Chitre ◽  
Kalyani. D. Asgaonkar ◽  
Amrut B. Vikhe ◽  
Shital M Patil ◽  
Dinesh. R. Garud ◽  
...  

Background: Diarylquinolines like Bedaquiline have shown promising antitubercular activity by their action of Mycobacterial ATPase. Objective: The structural features necessary for good antitubercular activity for a series of quinoline derivatives were explored through computational chemistry tools like QSAR and combinatorial library generation. In the current study, 3-Chloro-4-(2-mercaptoquinoline-3-yl)-1-substitutedphenylazitidin-2-one derivatives have been designed and synthesized based on molecular modeling studies as anti-tubercular agents. Method: 2D and 3DQSAR analysis was used to designed compounds having quinoline scaffold. The synthesized compounds were evaluated against active and dormant strains of Mycobacterium tuberculosis (MTB) H37 Ra and Mycobacterium bovis BCG. The compounds were also tested for cytotoxicity against MCF-7, A549 and Panc-1 cell lines using MTT assay. Binding affinity of designed compounds was gauged by molecular docking studies. Results: Statistically significant QSAR models generated by SA-MLR method for 2D QSAR exhibited r2 = 0.852, q2 = 0.811and whereas 3D QSAR with SA-kNN showed q2 = 0.77. The synthesized compounds exhibited MIC in the range of 1.38-14.59(µg/ml) .These compounds showed some crucial interaction with MTB Atpase. Conclusion: The present study has shown some promising results which can be further explored for lead generation.


Sign in / Sign up

Export Citation Format

Share Document