T cells: a dedicated effector kinase pathways for every trait?

2021 ◽  
Vol 478 (6) ◽  
pp. 1303-1307
Author(s):  
Kriti Bahl ◽  
Jeroen P. Roose

Signaling pathways play critical roles in regulating the activation of T cells. Recognition of foreign peptide presented by MHC to the T cell receptor (TCR) triggers a signaling cascade of proximal kinases and adapter molecules that lead to the activation of Effector kinase pathways. These effector kinase pathways play pivotal roles in T cell activation, differentiation, and proliferation. RNA sequencing-based methods have provided insights into the gene expression programs that support the above-mentioned cell biological responses. The proteome is often overlooked. A recent study by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] focuses on characterizing the effect of extracellular signal-regulated kinase (ERK) on the remodeling of the proteome of activated CD8+ T cells using Mass spectrometric analysis. Surprisingly, the Effector kinase ERK pathway is responsible for only a select proportion of the proteome that restructures during T cell activation. The primary targets of ERK signaling are transcription factors, cytokines, and cytokine receptors. In this commentary, we discuss the recent findings by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] in the context of different Effector kinase pathways in activated T cells.

Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. eaba4220 ◽  
Author(s):  
Tao Yue ◽  
Xiaoming Zhan ◽  
Duanwu Zhang ◽  
Ruchi Jain ◽  
Kuan-wen Wang ◽  
...  

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell–specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2’s mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


2020 ◽  
Author(s):  
Marcos P. Damasio ◽  
Julia M. Marchingo ◽  
Laura Spinelli ◽  
Doreen A. Cantrell ◽  
Andrew J.M. Howden

SummaryThe integration of multiple signalling pathways that co-ordinate T cell metabolism and transcriptional reprogramming is required to drive T cell differentiation and proliferation. One key T cell signalling module is mediated by extracellular signal-regulated kinases (ERKs) which are activated in response to antigen receptor engagement. The activity of ERKs is often used to report antigen receptor occupancy but the full details of how ERKs control T cell activation is not understood. Accordingly, we have used mass spectrometry to explore how ERK signalling pathways control antigen receptor driven proteome restructuring in CD8 + T cells to gain insights about the biological processes controlled by ERKs in primary lymphocytes. Quantitative analysis of >8000 proteins identified only 900 ERK regulated proteins in activated CD8+ T cells. The data identify both positive and negative regulatory roles for ERKs during T cell activation and reveal that ERK signalling primarily controls the repertoire of transcription factors, cytokines and cytokine receptors expressed by activated T cells. The ERKs thus drive the transcriptional reprogramming of activated T cells and the ability of T cells to communicate with external immune cues.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Abstract Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3615-3625 ◽  
Author(s):  
Li Tian ◽  
Jani Lappalainen ◽  
Matti Autero ◽  
Satu Hänninen ◽  
Heikki Rauvala ◽  
...  

Abstract Intercellular adhesion molecules (ICAMs) bind to leukocyte β2 integrins, which, among other functions, provide costimulatory signals for T-cell activation. ICAM-5 (telencephalin) is expressed in the somadendritic region of neurons of the mammalian brain. The receptor for ICAM-5 is the integrin LFA-1, a major leukocyte integ-rin expressed in lymphocytes and microglia. In conditions of brain ischemia, epilepsy, and encephalitis, the soluble form of ICAM-5 (sICAM-5) has been detected in physiologic fluids. Here, we report that sICAM-5 attenuates the T-cell receptor-mediated activation of T cells as demonstrated by the decreased expression of the activation markers CD69, CD40L, and CD25 (IL-2R). This effect is most clearly seen in CD45ROLow (naive), and not in CD45ROHigh (memory) T cells, and is most effective early in priming, but not in the presence of strong costimulatory signals. Furthermore, sICAM-5 promotes the mRNA expression of the cytokines TGF-β1 and IFN-γ, but not TNF. The formation of sICAM-5 is promoted by activated T cells through the cleavage of ICAM-5 from neurons. This suggests that ICAM-5 is involved in immune privilege of the brain and acts as an anti-inflammatory agent.


2007 ◽  
Vol 292 (4) ◽  
pp. C1431-C1439 ◽  
Author(s):  
Stella A. Nicolaou ◽  
Lisa Neumeier ◽  
YouQing Peng ◽  
Daniel C. Devor ◽  
Laura Conforti

T cell receptor engagement results in the reorganization of intracellular and membrane proteins at the T cell-antigen presenting cell interface forming the immunological synapse (IS), an event required for Ca2+ influx. KCa3.1 channels modulate Ca2+ signaling in activated T cells by regulating the membrane potential. Nothing is known regarding KCa3.1 membrane distribution during T cell activation. Herein, we determined whether KCa3.1 translocates to the IS in human T cells using YFP-tagged KCa3.1 channels. These channels showed electrophysiological and pharmacological properties identical to wild-type channels. IS formation was induced by either anti-CD3/CD28 antibody-coated beads for fixed microscopy experiments or Epstein-Barr virus-infected B cells for fixed and live cell microscopy. In fixed microscopy experiments, T cells were also immunolabeled for F-actin or CD3ε, which served as IS formation markers. The distribution of KCa3.1 was determined with confocal and fluorescence microscopy. We found that, upon T cell activation, KCa3.1 channels localize with F-actin and CD3ε to the IS but remain evenly distributed on the cell membrane when no stimulus is provided. Detailed imaging experiments indicated that KCa3.1 channels are recruited in the IS shortly after antigen presentation and are maintained there for at least 15–30 min. Interestingly, pretreatment of activated T cells with the specific KCa3.1 blocker TRAM-34 blocked Ca2+ influx, but channel redistribution to the IS was not prevented. These results indicate that KCa3.1 channels are a part of the signaling complex that forms at the IS upon antigen presentation.


Blood ◽  
2009 ◽  
Vol 113 (14) ◽  
pp. 3198-3208 ◽  
Author(s):  
Isabela Alcázar ◽  
Isabel Cortés ◽  
Angel Zaballos ◽  
Carmen Hernandez ◽  
David A. Fruman ◽  
...  

AbstractCD28 is a receptor expressed on T cells that regulates their differentiation after antigen stimulation to long-term-survival memory T cells. CD28 enhances T-cell receptor signals and reduces expression of CBL ubiquitin ligases, which negatively control T-cell activation. In the absence of CD28 ligation during the primary stimulation, CBL levels remain high and T cells fail to mount an efficient secondary response. CD28 associates with p85α, one of the regulatory subunits of phosphoinositide-3-kinase (PI3K), but the relevance of this interaction is debated. We examined here the contribution of the other ubiquitous PI3K regulatory subunit, p85β, in CD28 function. We describe that p85β bound to CD28 and to CBL with greater affinity than p85α. Moreover, deletion of p85β impaired CD28-induced intracellular events, including c-CBL and CBL-b down-regulation as well as PI3K pathway activation. This resulted in defective differentiation of activated T cells, which failed to exhibit an efficient secondary immune response. Considering that p85β-deficient T cells fail in recall responses and that p85β binds to and regulates CD28 signals, the presented observations suggest the involvement of p85β in CD28-mediated activation and differentiation of antigen-stimulated T cells.


2008 ◽  
Vol 19 (7) ◽  
pp. 2802-2817 ◽  
Author(s):  
Valarie A. Barr ◽  
Kelsie M. Bernot ◽  
Sonal Srikanth ◽  
Yousang Gwack ◽  
Lakshmi Balagopalan ◽  
...  

The proteins STIM1 and Orai1 are the long sought components of the store-operated channels required in T-cell activation. However, little is known about the interaction of these proteins in T-cells after engagement of the T-cell receptor. We found that T-cell receptor engagement caused STIM1 and Orai1 to colocalize in puncta near the site of stimulation and accumulate in a dense structure on the opposite side of the T-cell. FRET measurements showed a close interaction between STIM1 and Orai1 both in the puncta and in the dense cap-like structure. The formation of cap-like structures did not entail rearrangement of the entire endoplasmic reticulum. Cap formation depended on TCR engagement and tyrosine phosphorylation, but not on channel activity or Ca2+ influx. These caps were very dynamic in T-cells activated by contact with superantigen pulsed B-cells and could move from the distal pole to an existing or a newly forming immunological synapse. One function of this cap may be to provide preassembled Ca2+ channel components to existing and newly forming immunological synapses.


1999 ◽  
Vol 190 (11) ◽  
pp. 1657-1668 ◽  
Author(s):  
Keshava Rajagopal ◽  
Connie L. Sommers ◽  
Donna C. Decker ◽  
Elizabeth O. Mitchell ◽  
Ulf Korthauer ◽  
...  

A novel T cell–specific adaptor protein, RIBP, was identified based on its ability to bind Rlk/Txk in a yeast two-hybrid screen of a mouse T cell lymphoma library. RIBP was also found to interact with a related member of the Tec family of tyrosine kinases, Itk. Expression of RIBP is restricted to T and natural killer cells and is upregulated substantially after T cell activation. RIBP-disrupted knockout mice displayed apparently normal T cell development. However, proliferation of RIBP-deficient T cells in response to T cell receptor (TCR)-mediated activation was significantly impaired. Furthermore, these activated T cells were defective in the production of interleukin (IL)-2 and interferon γ, but not IL-4. These data suggest that RIBP plays an important role in TCR-mediated signal transduction pathways and that its binding to Itk and Rlk/Txk may regulate T cell differentiation.


2020 ◽  
Vol 21 (17) ◽  
pp. 6122 ◽  
Author(s):  
Hyun-Su Lee ◽  
Gil-Saeng Jeong

Since T lymphocytes act as mediators between innate and acquired immunity, playing a crucial role in chronic inflammation, regulation of T cell activation to suitable levels is important. Chrysophanol, a member of the anthraquinone family, is known to possess several bioactivities, including anti-microbial, anti-cancer, and hepatoprotective activities, however, little information is available on the inhibitory effects of chrysophanol on T cell activation. To elucidate whether chrysophanol regulates the activity of T cells, IL-2 expression in activated Jurkat T cells pretreated with chrysophanol was assessed. We showed that chrysophanol is not cytotoxic to Jurkat T cells under culture conditions using RPMI (Rosewell Park Memorial Institute) medium. Pretreatment with chrysophanol inhibited IL-2 production in T cells stimulated by CD3/28 antibodies or SEE-loaded Raji B cells. We also demonstrated that chrysophanol suppressed the expression of the CD40 ligand (CD40L) in activated T cells, and uncontrolled conjugation between B cells by pretreatment with chrysophanol reduced T cell activation. Besides, treatment with chrysophanol of Jurkat T cells blocked the NFκB signaling pathway, resulting in the abrogation of MAPK (mitogen-activated protein kinase) in activated T cells. These results provide novel insights into the suppressive effect of chrysophanol on T cell activation through the regulation of CD40L expression in T cell receptor-mediated stimulation conditions.


Sign in / Sign up

Export Citation Format

Share Document