scholarly journals Chrysophanol Mitigates T Cell Activation by Regulating the Expression of CD40 Ligand in Activated T Cells

2020 ◽  
Vol 21 (17) ◽  
pp. 6122 ◽  
Author(s):  
Hyun-Su Lee ◽  
Gil-Saeng Jeong

Since T lymphocytes act as mediators between innate and acquired immunity, playing a crucial role in chronic inflammation, regulation of T cell activation to suitable levels is important. Chrysophanol, a member of the anthraquinone family, is known to possess several bioactivities, including anti-microbial, anti-cancer, and hepatoprotective activities, however, little information is available on the inhibitory effects of chrysophanol on T cell activation. To elucidate whether chrysophanol regulates the activity of T cells, IL-2 expression in activated Jurkat T cells pretreated with chrysophanol was assessed. We showed that chrysophanol is not cytotoxic to Jurkat T cells under culture conditions using RPMI (Rosewell Park Memorial Institute) medium. Pretreatment with chrysophanol inhibited IL-2 production in T cells stimulated by CD3/28 antibodies or SEE-loaded Raji B cells. We also demonstrated that chrysophanol suppressed the expression of the CD40 ligand (CD40L) in activated T cells, and uncontrolled conjugation between B cells by pretreatment with chrysophanol reduced T cell activation. Besides, treatment with chrysophanol of Jurkat T cells blocked the NFκB signaling pathway, resulting in the abrogation of MAPK (mitogen-activated protein kinase) in activated T cells. These results provide novel insights into the suppressive effect of chrysophanol on T cell activation through the regulation of CD40L expression in T cell receptor-mediated stimulation conditions.

2021 ◽  
Vol 478 (6) ◽  
pp. 1303-1307
Author(s):  
Kriti Bahl ◽  
Jeroen P. Roose

Signaling pathways play critical roles in regulating the activation of T cells. Recognition of foreign peptide presented by MHC to the T cell receptor (TCR) triggers a signaling cascade of proximal kinases and adapter molecules that lead to the activation of Effector kinase pathways. These effector kinase pathways play pivotal roles in T cell activation, differentiation, and proliferation. RNA sequencing-based methods have provided insights into the gene expression programs that support the above-mentioned cell biological responses. The proteome is often overlooked. A recent study by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] focuses on characterizing the effect of extracellular signal-regulated kinase (ERK) on the remodeling of the proteome of activated CD8+ T cells using Mass spectrometric analysis. Surprisingly, the Effector kinase ERK pathway is responsible for only a select proportion of the proteome that restructures during T cell activation. The primary targets of ERK signaling are transcription factors, cytokines, and cytokine receptors. In this commentary, we discuss the recent findings by Damasio et al. [Biochem. J. (2021) 478, 79–98. doi:10.1042/BCJ20200661] in the context of different Effector kinase pathways in activated T cells.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. eaba4220 ◽  
Author(s):  
Tao Yue ◽  
Xiaoming Zhan ◽  
Duanwu Zhang ◽  
Ruchi Jain ◽  
Kuan-wen Wang ◽  
...  

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell–specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2’s mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Abstract Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3615-3625 ◽  
Author(s):  
Li Tian ◽  
Jani Lappalainen ◽  
Matti Autero ◽  
Satu Hänninen ◽  
Heikki Rauvala ◽  
...  

Abstract Intercellular adhesion molecules (ICAMs) bind to leukocyte β2 integrins, which, among other functions, provide costimulatory signals for T-cell activation. ICAM-5 (telencephalin) is expressed in the somadendritic region of neurons of the mammalian brain. The receptor for ICAM-5 is the integrin LFA-1, a major leukocyte integ-rin expressed in lymphocytes and microglia. In conditions of brain ischemia, epilepsy, and encephalitis, the soluble form of ICAM-5 (sICAM-5) has been detected in physiologic fluids. Here, we report that sICAM-5 attenuates the T-cell receptor-mediated activation of T cells as demonstrated by the decreased expression of the activation markers CD69, CD40L, and CD25 (IL-2R). This effect is most clearly seen in CD45ROLow (naive), and not in CD45ROHigh (memory) T cells, and is most effective early in priming, but not in the presence of strong costimulatory signals. Furthermore, sICAM-5 promotes the mRNA expression of the cytokines TGF-β1 and IFN-γ, but not TNF. The formation of sICAM-5 is promoted by activated T cells through the cleavage of ICAM-5 from neurons. This suggests that ICAM-5 is involved in immune privilege of the brain and acts as an anti-inflammatory agent.


2007 ◽  
Vol 292 (4) ◽  
pp. C1431-C1439 ◽  
Author(s):  
Stella A. Nicolaou ◽  
Lisa Neumeier ◽  
YouQing Peng ◽  
Daniel C. Devor ◽  
Laura Conforti

T cell receptor engagement results in the reorganization of intracellular and membrane proteins at the T cell-antigen presenting cell interface forming the immunological synapse (IS), an event required for Ca2+ influx. KCa3.1 channels modulate Ca2+ signaling in activated T cells by regulating the membrane potential. Nothing is known regarding KCa3.1 membrane distribution during T cell activation. Herein, we determined whether KCa3.1 translocates to the IS in human T cells using YFP-tagged KCa3.1 channels. These channels showed electrophysiological and pharmacological properties identical to wild-type channels. IS formation was induced by either anti-CD3/CD28 antibody-coated beads for fixed microscopy experiments or Epstein-Barr virus-infected B cells for fixed and live cell microscopy. In fixed microscopy experiments, T cells were also immunolabeled for F-actin or CD3ε, which served as IS formation markers. The distribution of KCa3.1 was determined with confocal and fluorescence microscopy. We found that, upon T cell activation, KCa3.1 channels localize with F-actin and CD3ε to the IS but remain evenly distributed on the cell membrane when no stimulus is provided. Detailed imaging experiments indicated that KCa3.1 channels are recruited in the IS shortly after antigen presentation and are maintained there for at least 15–30 min. Interestingly, pretreatment of activated T cells with the specific KCa3.1 blocker TRAM-34 blocked Ca2+ influx, but channel redistribution to the IS was not prevented. These results indicate that KCa3.1 channels are a part of the signaling complex that forms at the IS upon antigen presentation.


2005 ◽  
Vol 25 (4) ◽  
pp. 1367-1378 ◽  
Author(s):  
Wen-Hsien Liu ◽  
Ming-Zong Lai

ABSTRACT Deltex is known as a Notch signal mediator, but its physiological action mechanism is poorly understood. Here we identified a new regulatory role of Deltex in T-cell activation. Deltex expression was constitutive in resting T cells and was reduced upon T-cell receptor (TCR)-stimulated activation. The biological role of Deltex is supported by the enhanced T-cell activation when Deltex1 was down-regulated by small interfering RNA. Overexpression of Deltex1 suppressed T-cell activation but not the proximal TCR activation events. The impaired activation of mitogen-activated protein kinase by Deltex could be partly attributed to a selective down-regulation of MEKK1 protein in T cells. We further found that Deltex promoted degradation of the C-terminal catalytic fragment of MEKK1 [MEKK1(C)]. Deltex1 interacted directly with MEKK1(C) and stimulated the ubiquitination of MEKK1(C) as shown by in vivo and in vitro ubiquitination analysis. Therefore, MEKK1(C), the dominant form of MEKK1 in T cells, is a target of Deltex E3 ubiquitin ligase. Our results reveal a novel mechanism as to how Deltex selectively suppresses T-cell activation through degradation of a key signaling molecule, MEKK1.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4692-4692
Author(s):  
Mauro Di Ianni ◽  
Lorenzo Moretti ◽  
Beatrice Del Papa ◽  
Maria De Ioanni ◽  
Adelmo Terenzi ◽  
...  

Abstract As Chronic Lymphocytic Leukemia (CLL) is associated with several defects in the T cell compartment, the impact of tumour burden on the autologous immune system was studied. Gene expression profiles (using Applied Biosystem Human Genome Microarray) identified 237 genes with significantly increased expression and 221 genes with significantly decreased expression (p<0.05) in CD3+ cells from CLL patients compared with healthy donors. Panther software analysis identified 34/237 upregulated genes and 26/221 downregulated genes that were involved in specific pathways, mainly cell differentiation and proliferation, survival, apoptosis, cytoskeleton formation, vesicle trafficking and T cell activation. The 26 dowregulated genes included Zap70, a member of the syk family protein tyrosine kinase, which is involved in T-cell activation. Zap-70 results were validated by mRNA quantification by RT-PCR (−1.77 fold in comparison with healthy controls) and by flow-cytometric analysis (Mean Intensity Fluorescence=33±12 vs 80±23.62 in controls, p<0.05). To test the hypothesis that activation with OKT3 /IL-2 could bypass these T cell deficiencies, activated T cells from 20 patients with CLL were tested in vitro for cytotoxicity (using the 51chromium release assay) against mutated and unmutated (according to IgVH mutational status) autologous B cells, DAUDI, K562 and P815 cell lines. After 10 days’ culture, the T cell count remained unchanged; CD8 cells expanded more than CD4; TCR spectratyping analysis indicated no differences in TCR repertoires. Activation restored the ZAP-70 mRNA (+1.67 fold). The 51chromium release cytotoxicity assay showed an index > 30% in 5/20 patients. The other 15 were partially cytotoxic against P815, K562 and Daudi. Cell line analysis in all 20 confirmed prevalently T cell-mediated cytotoxicity and poor NK/LAK activity. Cytotoxicity did not correlate with B cell mutational status. We tested the cytotoxic activity of autologous activated T cells in NOD/SCID mice co-transplanted with leukaemic B cells. Only activated T cells exerting cytotoxicity vs autologous B-cell CLL prevent CLL in human-mouse chimera, as confirmed by PCR and FACS analysis which visualised only CD3+ cells. In conclusion, in patients with CLL, activating autologous T cells with OKT3 /IL-2 bypasses, at least in part, the T cell immunological deficiencies. These in vitro and in vivo findings might serve to throw light on new mechanisms that could be exploited in immunotherapy designed to exert disease control.


Blood ◽  
2009 ◽  
Vol 113 (14) ◽  
pp. 3198-3208 ◽  
Author(s):  
Isabela Alcázar ◽  
Isabel Cortés ◽  
Angel Zaballos ◽  
Carmen Hernandez ◽  
David A. Fruman ◽  
...  

AbstractCD28 is a receptor expressed on T cells that regulates their differentiation after antigen stimulation to long-term-survival memory T cells. CD28 enhances T-cell receptor signals and reduces expression of CBL ubiquitin ligases, which negatively control T-cell activation. In the absence of CD28 ligation during the primary stimulation, CBL levels remain high and T cells fail to mount an efficient secondary response. CD28 associates with p85α, one of the regulatory subunits of phosphoinositide-3-kinase (PI3K), but the relevance of this interaction is debated. We examined here the contribution of the other ubiquitous PI3K regulatory subunit, p85β, in CD28 function. We describe that p85β bound to CD28 and to CBL with greater affinity than p85α. Moreover, deletion of p85β impaired CD28-induced intracellular events, including c-CBL and CBL-b down-regulation as well as PI3K pathway activation. This resulted in defective differentiation of activated T cells, which failed to exhibit an efficient secondary immune response. Considering that p85β-deficient T cells fail in recall responses and that p85β binds to and regulates CD28 signals, the presented observations suggest the involvement of p85β in CD28-mediated activation and differentiation of antigen-stimulated T cells.


2013 ◽  
Vol 289 (3) ◽  
pp. 1564-1579 ◽  
Author(s):  
Yuko Naito-Matsui ◽  
Shuhei Takada ◽  
Yoshinobu Kano ◽  
Tomonori Iyoda ◽  
Manabu Sugai ◽  
...  

Sialic acids (Sias) are often conjugated to the termini of cellular glycans and are key mediators of cellular recognition. Sias are nine-carbon acidic sugars, and, in vertebrates, the major species are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), differing in structure at the C5 position. Previously, we described a positive feedback loop involving regulation of Neu5Gc expression in mouse B cells. In this context, Neu5Gc negatively regulated B-cell proliferation, and Neu5Gc expression was suppressed upon activation. Similarly, resting mouse T cells expressed principally Neu5Gc, and Neu5Ac was induced upon activation. In the present work, we used various probes to examine sialoglycan expression by activated T cells in terms of the Sia species expressed and the linkages of Sias to glycans. Upon T-cell activation, sialoglycan expression shifted from Neu5Gc to Neu5Ac, and the linkage shifted from α2,6 to α2,3. These changes altered the expression levels of sialic acid-binding immunoglobulin-like lectin (siglec) ligands. Expression of sialoadhesin and Siglec-F ligands increased, and that of CD22 ligands decreased. Neu5Gc exerted a negative effect on T-cell activation, both in terms of the proliferative response and in the context of activation marker expression. Suppression of Neu5Gc expression in mouse T and B cells prevented the development of nonspecific CD22-mediated T cell-B cell interactions. Our results suggest that an activation-dependent shift from Neu5Gc to Neu5Ac and replacement of α2,6 by α2,3 linkages may regulate immune cell interactions at several levels.


Sign in / Sign up

Export Citation Format

Share Document