scholarly journals Substituent effect on lysozyme-catalysed hydrolysis of some β-aryl di-N-acetylchitobiosides

1969 ◽  
Vol 114 (3) ◽  
pp. 529-534 ◽  
Author(s):  
C. S. Tsai ◽  
J. Y. Tang ◽  
S. C. Subbarao

Measurements are reported on the kinetics of the lysozyme-catalysed hydrolysis of several β-aryl di-N-acetylchitobiosides, some of which have been synthesized for the first time. The catalytic rate constants (kcat.) at 45° yield a curved Hammett plot (concave up) and the plot of ΔH‡ versus ΔS‡ has a sharp break. Substrates with electron-withdrawing groups exhibit a kinetic deuterium isotope effect (kHcat./kDcat.), whereas those with electron-donating groups show no such isotope effect. The results suggest the operation of different mechanisms for the two types of substrates.

1970 ◽  
Vol 48 (4) ◽  
pp. 522-527 ◽  
Author(s):  
A. Queen ◽  
T. A. Nour ◽  
M. N. Paddon-Row ◽  
K. Preston

The effects of structural changes on the rates of hydrolysis of a series of thiochloroformate esters in water have been investigated. The reactivity is enhanced by increased electron donation by the hydro carbon group. These results, the activation parameters for the hydrolysis of methyl thiochloroformate and the solvent deuterium isotope effect, are shown to be consistent with the operation of the SN1 mechanism.


2005 ◽  
Vol 83 (9) ◽  
pp. 1253-1260 ◽  
Author(s):  
Karen Kam ◽  
Mohammad Rahimizadeh ◽  
Robert S McDonald ◽  
Paul HM Harrison ◽  
Hao Chen ◽  
...  

Apparent rate constants for the tert-butoxide promoted Claisen-like condensation of a series of N1-acetyl-N6-aroyl-2,5-dithio-3,4,7,8-tetramethylglycolurils (9a–9f) to give N1-(3′-aroyl-3′-oxopropionyl)-2,5-dithio-3,4,7,8-tetramethylglycolurils (10a–10f) were determined by UV spectroscopy. Overall rate accelerations of 3.5- to 18-fold were found relative to the corresponding reactions of the 2,5-dioxo compounds (7a–7f). Analysis of the Hammett plot for 9 and comparison with that for 7 shows that the key C—C bond-forming step, where the enolate of the acetyl group of the substrate attacks the aroyl carbonyl group, is accelerated by the thio substitution. For electron-withdrawing substituents in the aroyl group, the acceleration is sufficient to make this step nonrate limiting: the Hammett ρ value drops from approx. 1.5 for electron-donating groups to 0.27 for electron-withdrawing groups. Deuterium substitution in the acetyl group reduces the rate slightly, a result consistent with a slow but partially reversible first step in which substrate is deprotonated. A similar acceleration and isotope effect are found when diacetyl glycoluril (2) and diacetyl dithio glycoluril (5) are compared. The implications of these results are discussed.Key words: glycoluril, Claisen condensation, kinetics, mechanism.


1982 ◽  
Vol 60 (24) ◽  
pp. 3077-3080
Author(s):  
Kenneth T. Leffek ◽  
Grzegorz Schroeder

The addition of crown ethers 1,4,7,10,13-pentaoxacyclopentadecane (15C5) and 1,4,7,10,13,16-hexaoxacyclooctadecane (18C6) in quantities equimolar to the base, to β-elimination reactions of 1,1,1-trifluoro-2,2-di(4-nitrophenyl)ethane and 1-fluoro-2,2-di(4-nitrophenyl)ethane promoted by sodium methoxide in methanol, has been investigated. In the E2 reaction of the monofluoro compound, the crown ethers caused no change in the kinetic order and only small changes in the second-order rate constants and activation parameters. The primary deuterium isotope effect was also unaltered by the presence of crown ethers.For the (E1cB)R reaction of the trifluoro compound, no change in kinetic order was found, but slightly larger rate constant changes and an increase in the isotope effect from kH/kD = 1.0 to 1.25 at 25 °C was observed. This is interpreted as an alteration in mechanism from (E1cB)R towards (E1cB)I.


1981 ◽  
Vol 46 (5) ◽  
pp. 1229-1236 ◽  
Author(s):  
Jan Balej ◽  
Milada Thumová

The rate of hydrolysis of S2O82- ions in acidic medium to peroxomonosulphuric acid was measured at 20 and 30 °C. The composition of the starting solution corresponded to the anolyte flowing out from an electrolyser for production of this acid or its ammonium salt at various degrees of conversion and starting molar ratios of sulphuric acid to ammonium sulphate. The measured data served to calculate the rate constants at both temperatures on the basis of the earlier proposed mechanism of the hydrolysis, and their dependence on the ionic strength was studied.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1557-1570 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Ilmar A. Koppel

The second-order rate constants k2 (dm3 mol-1 s-1) for the alkaline hydrolysis of substituted alkyl benzoates C6H5CO2R have been measured spectrophotometrically in aqueous 0.5 M Bu4NBr at 50 and 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH, CH2C6H5, CH2CH2Cl, CH2CH2OCH3, CH2CH3) and in aqueous 5.3 M NaClO4 at 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH). The dependence of the alkyl substituent effects on different solvent parameters was studied using the following equations:      ∆ log k = c0 + c1σI + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆EσI + c7∆YσI + c8∆PσI     ∆ log k = c0 + c1σ* + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆Eσ* + c7∆Yσ* + c8∆Pσ* .  ∆ log k = log kR - log kCH3. σI and σ* are the Taft inductive and polar substituent constants. E, Y and P are the solvent electrophilicity, polarity and polarizability parameters, respectively. In the data treatment ∆E = ES - EH2O , ∆Y = YS - YH2O , ∆P = PS - PH2O were used. The solvent electrophilicity, E, was found to be the main factor responsible for changes in alkyl substituent effects with medium. When σI constants were used, variation of the polar term of alkyl substituents with the solvent electrophilicity E was found to be similar to that observed earlier for meta and para substituents, but twice less when σ* constants were used. The steric term for alkyl substituents was approximately independent of the solvent parameters.


RSC Advances ◽  
2015 ◽  
Vol 5 (34) ◽  
pp. 26559-26568 ◽  
Author(s):  
Angappan Mano Priya ◽  
Gisèle El Dib ◽  
Lakshmipathi Senthilkumar ◽  
Chantal Sleiman ◽  
Alexandre Tomas ◽  
...  

Absolute experimental and theoretical rate constants are determined for the first time for the reaction of 3-hydroxy-3-methyl-2-butanone with OH as a function of temperature. The atmospheric implications are discussed.


1994 ◽  
Vol 30 (3) ◽  
pp. 53-61 ◽  
Author(s):  
Harro M. Heilmann ◽  
Michael K. Stenstrom ◽  
Rolf P. X. Hesselmann ◽  
Udo Wiesmann

In order to get basic data for the design of a novel treatment scheme for high explosives we investigated the kinetics for the aqueous alkaline hydrolysis of 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX) and the temperature dependence of the rate constants. We used an HPLC procedure for the analysis of HMX. All experimental data could be fit accurately to a pseudo first-order rate equation and subsequent calculation of second-order rate constants was also precise. Temperature dependence could be modeled with the Arrhenius equation. An increase of 10°C led to an average increase in the second-order rate constants by the 3.16 fold. The activation energy of the second-order reaction was determined to be 111.9 ±0.76 kJ·moJ‒1. We found the alkaline hydrolysis to be rapid (less than 2.5% of the initial HMX-concentration left after 100 minutes) at base concentrations of 23 mmol oH‒/L and elevated temperatures between 60 and 80°C.


Sign in / Sign up

Export Citation Format

Share Document