scholarly journals Effect of hexachlorobenzene on haem synthesis

1972 ◽  
Vol 129 (2) ◽  
pp. 381-387 ◽  
Author(s):  
C. Rajamanickam ◽  
J. Amrutavalli ◽  
M. R. S. Rao ◽  
G. Padmanaban

Several drugs are known to induce the liver microsomal mixed-function oxidase system when administered in vivo or even in vitro in cell culture. A sequence of events has been suggested in which the drug is visualized to induce δ-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, which is followed by enhanced haem synthesis and cytochrome P-450 content, facilitating the increase in the drug-metabolizing activity of the liver microsomal fraction. The present studies show that the fungicide hexachlorobenzene, when administered to female rats, can lead to enhanced amounts and rate of synthesis of cytochrome P-450 under conditions when the rate of total haem synthesis has not appreciably altered. The subsequent increase in the rate of total haem synthesis as well as the initial increase in amounts of cytochrome P-450 are brought about under conditions when δ-aminolaevulinate synthetase activity remains constant. However, manifestation of porphyria due to prolonged drug administration is accompanied by a twofold increase in δ-aminolaevulinate synthetase activity. The increase in enzyme activity appears to be due to a decreased degradation rate of the enzyme.

1977 ◽  
Vol 166 (1) ◽  
pp. 57-64 ◽  
Author(s):  
I N H White ◽  
U Muller-Eberhard

1. 19-Nor-17alpha-pregna-1,3,5(10)-trien-20-yne-3,17-diol (ethynyloestradiol) or 17beta-hydroxy-19-nor-17alpha-pregn-4-en-20-yn-3-one (norethindrone) but not 17alpha-ethyl-17beta-hydroxy-19-norandrost-4-en-3-one (norethandrolone) caused a time-dependent loss of cytochrome P-450 when incubated in vitro with rat liver microsomal fractions and NADPH-generating systems. 2. The enzyme system catalysing the norethindrone-mediated loss of cytochrome P-450 had many characteristics of the microsomal mixed-function oxidases. It required NADPH and air, and was inhibited by Co. However, it was unaffected by 1 mM-compound SKF 525A. 3. In microsomal fractions from phenobarbitone-pretreated rats the norethindrone-mediated loss of cytochrome P-450 was increased relative to controls. The norethindrone-mediated cytochrome P-450 loss was less pronounced when the animals were pretreated with 3beta-hydroxy-pregn-5-en-2-one 16alpha-carbonitrile (pregnenolone 16alpha-carbonitrile). Pretreatment with 3-methylcholanthrene rendered the animals resistant to the norethindrone effect. 4. Administration in vivo [100mg/kg, intraperitoneally] of norethindrone or ethinyl oestradiol also produced a time-dependent loss of liver cytochrome P-450. Norethandrolone had a similar, though much less-marked, effect. All three steroids lead to an induction of 5-aminolaevulinate synthase and an accumulation of porphyrins in the liver. 5. The loss of cytochrome P-450 and the accumulation of porphyrins in the liver 2 h after the administration of norethindrone to female rats was similar to that seen in males. 6. Rats pretreated with phenobarbitone and given norethindrone or ethynyloestradiol (100mg/kg, intraperitoneally) formed green pigments in their livers. These had characteristics similar to the green pigments produced in the livers of rats after the administration of 2-allyl-2-isopropylacetamide. No green pigments could be extracted from the livers of control rats or those given norethandrolone, oestradiol or progesterone.


1973 ◽  
Vol 134 (4) ◽  
pp. 859-868 ◽  
Author(s):  
Manchanahalli R. Satyanarayana Rao ◽  
Govindarajan Padmanaban

Successive administrations of allylisopropylacetamide, a potent porphyrinogenic drug, increase liver weight, microsomal protein and phospholipid contents. There is an increase in the rate of microsomal protein synthesis in vivo and in vitro. The drug decreases microsomal ribonuclease activity and increases NADPH–cytochrome c reductase activity. Phenobarbital, which has been reported to exhibit all these changes mentioned, is a weaker inducer of δ-aminolaevulinate synthetase and increases the rate of haem synthesis only after a considerable time-lag in fed female rats, when compared with the effects observed with allylisopropylacetamide. Again, phenobarbital does not share the property of allylisopropylacetamide in causing an initial decrease in cytochrome P-450 content. Haematin does not counteract most of the biochemical effects caused by allylisopropylacetamide, although it is quite effective in the case of phenobarbital. Haematin does not inhibit the uptake of [2-14C]allylisopropylacetamide by any of the liver subcellular fractions.


2019 ◽  
Vol 20 (10) ◽  
pp. 2500 ◽  
Author(s):  
Vrathasha Vrathasha ◽  
Hilary Weidner ◽  
Anja Nohe

Background: Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. Methods: Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. Results: Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. Conclusion: CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.


1985 ◽  
Vol 249 (3) ◽  
pp. E276-E280 ◽  
Author(s):  
W. S. Evans ◽  
R. J. Krieg ◽  
E. R. Limber ◽  
D. L. Kaiser ◽  
M. O. Thorner

The effects of gender and the gonadal hormone environment on basal and stimulated growth hormone (GH) release by dispersed and continuously perifused rat anterior pituitary cells were examined. Cells from intact male and diestrus day 2 female rats and from castrate male rats either untreated or treated with testosterone (T) or 17 beta-estradiol (E2) were used. Basal GH release (ng/min per 10(7) cells; mean +/- SE) by cells from diestrus day 2 female rats was less than by cells from castrate rats treated with T (4.3 +/- 0.6 vs. 11.4 +/- 2.7, respectively; P less than 0.025). No other differences in basal release were detected. Concentration-response relationships were documented between human GH-releasing factor 40 (hGRF-40; 0.03-100 nM given as 2.5-min pulses every 27.5 min) and GH release. Mean (+/- SE) overall GH release (ng/min per 10(7) cells) above base line was greater by cells from intact male rats (496 +/- 92) than by cells from castrate (203 +/- 37.3; P less than 0.0001), castrate and T-treated (348 +/- 52.8; P = 0.008), or castrate and E2-treated (58.1 +/- 6.8; P less than 0.001) male rats or by diestrus day 2 rats (68.6 +/- 9.5; P = 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi24-vi25
Author(s):  
Lata Adnani ◽  
Brian Meehan ◽  
Jordan Kassouf ◽  
Cristiana Spinelli ◽  
Nadim Tawil ◽  
...  

Abstract Glioblastoma multiforme (GBM) represents the most frequent and lethal form of brain tumors originating from glioma stem cells (GSCs). GBM remains lethal because the rate limiting patho-mechanisms remain poorly understood. In this regard, few limitations involve the diversity 'between' cellular states and the molecular/cellular complexity 'within' the tumour mass. Using cell based- and mouse- models, we explored extracellular vesicle (EV) mediated interactions between cancer and stromal cells impacting phenotypes of GSCs as a function of their molecular subtype. EVs are spherical membrane structures that cells release to expel different molecular cargo (lipids, proteins, RNA, DNA), which can be transported across a distance in the brain and taken up by various ‘recipient’ cells resulting in reprogramming of the recipient cell's content and function. In vivo, GSCs altered their pattern of NOTCH signalling and molecular phenotype as a function of proximity to non-transformed host cells in the brain. In vitro stromal EVs altered GSC sphere forming capacity, proteome and expression of mesenchymal markers. Thus, EV mediated tumour-stromal interactions could represent a biological switch and a novel targeting point in the biology of GBM.


1993 ◽  
Vol 13 (7) ◽  
pp. 3841-3849
Author(s):  
B Zenzie-Gregory ◽  
A Khachi ◽  
I P Garraway ◽  
S T Smale

Promoters containing Sp1 binding sites and an initiator element but lacking a TATA box direct high levels of accurate transcription initiation by using a mechanism that requires the TATA-binding protein (TBP). We have begun to address the role of TBP during transcription from Sp1-initiator promoters by varying the nucleotide sequence between -14 and -33 relative to the start site. With each of several promoters containing different upstream sequences, we detected accurate transcription both in vitro and in vivo, but the promoter strengths varied widely, particularly with the in vitro assay. The variable promoter activities correlated with, but were not proportional to, the abilities of the upstream sequences to function as TATA boxes, as assessed by multiple criteria. These results confirm that accurate transcription can proceed in the presence of an initiator, regardless of the sequence present in the -30 region. However, the results reveal a role for this upstream region, most consistent with a model in which initiator-mediated transcription requires binding of TBP to the upstream DNA in the absence of a specific recognition sequence. Moreover, in vivo it appears that the promoter strength is modulated less severely by altering the -30 sequence, consistent with a previous suggestion that TBP is not rate limiting in vivo for TATA-less promoters. Taken together, these results suggest that variations in the structure of a core promoter might alter the rate-limiting step for transcription initiation and thereby alter the potential modes of transcriptional regulation, without severely changing the pathway used to assemble a functional preinitiation complex.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 153 ◽  
Author(s):  
Keisuke Yoshida ◽  
Toru Hisabori

Thiol-based redox regulation ensures light-responsive control of chloroplast functions. Light-derived signal is transferred in the form of reducing power from the photosynthetic electron transport chain to several redox-sensitive target proteins. Two types of protein, ferredoxin-thioredoxin reductase (FTR) and thioredoxin (Trx), are well recognized as the mediators of reducing power. However, it remains unclear which step in a series of redox-relay reactions is the critical bottleneck for determining the rate of target protein reduction. To address this, the redox behaviors of FTR, Trx, and target proteins were extensively characterized in vitro and in vivo. The FTR/Trx redox cascade was reconstituted in vitro using recombinant proteins from Arabidopsis. On the basis of this assay, we found that the FTR catalytic subunit and f-type Trx are rapidly reduced after the drive of reducing power transfer, irrespective of the presence or absence of their downstream target proteins. By contrast, three target proteins, fructose 1,6-bisphosphatase (FBPase), sedoheptulose 1,7-bisphosphatase (SBPase), and Rubisco activase (RCA) showed different reduction patterns; in particular, SBPase was reduced at a low rate. The in vivo study using Arabidopsis plants showed that the Trx family is commonly and rapidly reduced upon high light irradiation, whereas FBPase, SBPase, and RCA are differentially and slowly reduced. Both of these biochemical and physiological findings suggest that reducing power transfer from Trx to its target proteins is a rate-limiting step for chloroplast redox regulation, conferring distinct light-responsive redox behaviors on each of the targets.


1971 ◽  
Vol 122 (3) ◽  
pp. 267-276 ◽  
Author(s):  
D. C. N. Earl ◽  
Susan T. Hindley

1. At 3 min after an intravenous injection of radioactive amino acids into the rat, the bulk of radioactivity associated with liver polyribosomes can be interpreted as growing peptides. 2. In an attempt to identify the rate-limiting step of protein synthesis in vivo and in vitro, use was made of the action of puromycin at 0°C, in releasing growing peptides only from the donor site, to study the distribution of growing peptides between the donor and acceptor sites. 3. Evidence is presented that all growing peptides in a population of liver polyribosomes labelled in vivo are similarly distributed between the donor and acceptor sites, and that the proportion released by puromycin is not an artifact of methodology. 4. The proportion released by puromycin is about 50% for both liver and muscle polyribosomes labelled in vivo, suggesting that neither the availability nor binding of aminoacyl-tRNA nor peptide bond synthesis nor translocation can limit the rate of protein synthesis in vivo. Attempts to alter this by starvation, hypophysectomy, growth hormone, alloxan, insulin and partial hepatectomy were unsuccessful. 5. Growing peptides on liver polyribosomes labelled in a cell-free system in vitro or by incubating hemidiaphragms in vitro were largely in the donor site, suggesting that either the availability or binding of aminoacyl-tRNA, or peptide bond synthesis, must be rate limiting in vitro and that the rate-limiting step differs from that in vivo. 6. Neither in vivo nor in the hemidiaphragm system in vitro was a correlation found between the proportion of growing peptides in the donor site and changes in the rate of incorporation of radioactivity into protein. This could indicate that the intracellular concentration of amino acids or aminoacyl-tRNA limits the rate of protein synthesis and that the increased incorporation results from a rise to a higher but still suboptimum concentration.


2013 ◽  
Vol 220 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Dang-Dang Li ◽  
Ying-Jie Gao ◽  
Xue-Chao Tian ◽  
Zhan-Qing Yang ◽  
Hang Cao ◽  
...  

Tryptophan 2,3-dioxygenase (Tdo2) is a rate-limiting enzyme which directs the conversion of tryptophan to kynurenine. The aim of this study was to examine the expression and regulation of Tdo2 in mouse uterus during decidualization. Tdo2 mRNA was mainly expressed in the decidua on days 6–8 of pregnancy. By real-time PCR, a high level of Tdo2 expression was observed in the uteri from days 6 to 8 of pregnancy, although Tdo2 expression was observed on days 1–8. Simultaneously, Tdo2 mRNA was also detected under in vivo and in vitro artificial decidualization. Estrogen, progesterone, and 8-bromoadenosine-cAMP could induce the expression of Tdo2 in the ovariectomized mouse uterus and uterine stromal cells. Tdo2 could regulate cell proliferation and stimulate the expression of decidual marker Dtprp in the uterine stromal cells and decidual cells. Overexpression of Tdo2 could upregulate the expression of Ahr, Cox2, and Vegf genes in uterine stromal cells, while Tdo2 inhibitor 680C91 could downregulate the expression of Cox2 and Vegf genes in uterine decidual cells. These data indicate that Tdo2 may play an important role during mouse decidualization and be regulated by estrogen, progesterone, and cAMP.


Author(s):  
T. O. PHILIPPOVA ◽  
B. N. GALKIN ◽  
N. YA. GOLOVENKO ◽  
Z. I. ZHILINA ◽  
S. V. VODZINSKII

Tin complexes of meso-substituted synthetic porphyrins, namely Sn 4+-meso-tetraphenyl- porphyrin ( Sn - TPP ) and Sn 4+-meso-tetrakis(N-methyl-3-pyridyl)porphyrin tetratosylate ( Sn - TMe -3- PyP ), efficiently decrease the serum bilirubin level when injected subcutaneously at a dose of 100 μM kg−1 body weight into mice. These compounds are active during hyperbilirubinemia, induced by phenylhydrazine, hemin and tetrachloromethane, and also during autoimmune hemolytic anemia. In the latter case a decrease in serum bilirubin content was observed, as well as a decrease in the amount of blood reticulocytes which reflects a milder course of the disease. The Sn complexes under study induce, in vivo, cytochrome P-450, inhibit microsomal heme oxygenase and decrease the intensity of lipid peroxidation. At the same time, in vitro the hepatic and splenic heme oxygenase activity is blocked only when a 0.1 μM concentration of Sn - TMe -3- PyP or Sn -protoporphyrin IX is added to the incubation mixture. Sn - TPP does not affect the activity of this enzyme in vitro.


Sign in / Sign up

Export Citation Format

Share Document