scholarly journals The uptake and metabolism of plasma lysophosphatidylcholine in vivo by the brain of squirrel monkeys

1972 ◽  
Vol 130 (2) ◽  
pp. 557-567 ◽  
Author(s):  
D. R. Illingworth ◽  
O. W. Portman

1. Adult squirrel monkeys were injected intravenously with doubly labelled lysophosphatidylcholine (a mixture of 1-[1-14C]palmitoyl-sn-glycero-3-phosphorylcholine and 1-acyl-sn-glycero-3-phosphoryl[Me-3H]choline; 3H:14Cratio 3.75) complexed to albumin, and the incorporation into the brain was studied at times up to 3h. 2. After 20min, 1% of the radioactivity injected as lysophosphatidylcholine had been taken up by the brain. 3. Approx. 70% of the doubly labelled lysophosphatidylcholine taken up by both grey and white matter was converted into phosphatidylcholine, whereas about 30% was hydrolysed. 4. The absence of significant radioactivity in the phosphatidylcholine, free fatty acid and water-soluble fractions of plasma up to 30min after injection of doubly labelled lysophosphatidylcholine rules out the possibility that the rapid labelling of these compounds in brain could be due to uptake from or exchange with their counterparts in plasma. 5. The similarity between the 3H:14C ratios of brain phosphatidylcholine and injected lysophosphatidylcholine demonstrates that formation of the former occurred predominantly via direct acylation. 6. Analysis of the water-soluble products from lysophosphatidylcholine catabolism revealed that appreciable glycerophosphoryl-[Me-3H]choline did not accumulate in the brain and that radioactivity was incorporated into choline, acetylcholine, phosphorylcholine and βine. 7. The role of plasma lysophosphatidylcholine as both a precursor of brain phosphatidylcholine and a source of free choline for the brain is discussed.

1968 ◽  
Vol 110 (2) ◽  
pp. 201-206 ◽  
Author(s):  
G B Ansell ◽  
Sheila Spanner

[Me−14C]Choline was injected intracerebrally into the adult rat, and its uptake into the lipids and their water-soluble precursors in brain was studied. The radioactivity could be detected only in the choline-containing lipids and was confined to the base choline. The results indicated that initial phosphorylation of the free choline followed by the formation of CDP-choline and the subsequent transfer of the phosphorylcholine to a diglyceride is one of the principal routes by which choline lipids in brain are formed. Further evidence for this was obtained in experiments in which either phosphoryl[Me−14C]choline or [32P]orthophosphate was injected and the radioactivity in the choline-containing water-soluble and lipidbound components studied.


1971 ◽  
Vol 122 (5) ◽  
pp. 741-750 ◽  
Author(s):  
G. B. Ansell ◽  
Sheila Spanner

1. Labelled precursors of choline, namely ethanolamine, dimethylaminoethanol and methionine and also labelled choline itself were injected intraperitoneally into the adult female rat and the incorporation into lipids and water-soluble fractions was traced in liver, blood and brain. 2. No significant free choline was detected and no labelling of the phosphorylcholine of blood. There was, however, considerable labelling of the phosphorylcholine of brain and liver. 3. After intracerebral injection, [1,2-14C]dimethylaminoethanol was rapidly phosphorylated and converted into phosphatidyldimethylaminoethanol, presumably by the cytidine pathway. 4. In view of the pattern of labelling and the amount of phosphatidylcholine in the tissues examined, it seems highly likely that choline is transported to the brain by the blood in a lipid-bound form.


ChemInform ◽  
2009 ◽  
Vol 40 (26) ◽  
Author(s):  
Keiju Motohashi ◽  
Yui Yamamoto ◽  
Norifumi Shioda ◽  
Hisatake Kondo ◽  
Yuji Owada ◽  
...  

Author(s):  
Marlaina R. Stocco ◽  
Ahmed A. El-Sherbeni ◽  
Bin Zhao ◽  
Maria Novalen ◽  
Rachel F. Tyndale

Abstract Rationale Cytochrome P450 2D (CYP2D) enzymes metabolize many addictive drugs, including methamphetamine. Variable CYP2D metabolism in the brain may alter CNS drug/metabolite concentrations, consequently affecting addiction liability and neuropsychiatric outcomes; components of these can be modeled by behavioral sensitization in rats. Methods To investigate the role of CYP2D in the brain in methamphetamine-induced behavioral sensitization, rats were pretreated centrally with a CYP2D irreversible inhibitor (or vehicle) 20 h prior to each of 7 daily methamphetamine (0.5 mg/kg subcutaneous) injections. In vivo brain microdialysis was used to assess brain drug and metabolite concentrations, and neurotransmitter release. Results CYP2D inhibitor (versus vehicle) pretreatment enhanced methamphetamine-induced stereotypy response sensitization. CYP2D inhibitor pretreatment increased brain methamphetamine concentrations and decreased the brain p-hydroxylation metabolic ratio. With microdialysis conducted on days 1 and 7, CYP2D inhibitor pretreatment exacerbated stereotypy sensitization and enhanced dopamine and serotonin release in the dorsal striatum. Day 1 brain methamphetamine and amphetamine concentrations correlated with dopamine and serotonin release, which in turn correlated with the stereotypy response slope across sessions (i.e., day 1 through day 7), used as a measure of sensitization. Conclusions CYP2D-mediated methamphetamine metabolism in the brain is sufficient to alter behavioral sensitization, brain drug concentrations, and striatal dopamine and serotonin release. Moreover, day 1 methamphetamine-induced neurotransmitter release may be an important predictor of subsequent behavioral sensitization. This suggests the novel contribution of CYP2D in the brain to methamphetamine-induced behavioral sensitization and suggests that the wide variation in human brain CYP2D6 may contribute to differential methamphetamine responses and chronic effects.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 252
Author(s):  
Jacopo Meldolesi

Biomarkers are molecules that are variable in their origin, nature, and mechanism of action; they are of great relevance in biology and also in medicine because of their specific connection with a single or several diseases. Biomarkers are of two types, which in some cases are operative with each other. Fluid biomarkers, started around 2000, are generated in fluid from specific proteins/peptides and miRNAs accumulated within two extracellular fluids, either the central spinal fluid or blood plasma. The switch of these proteins/peptides and miRNAs, from free to segregated within extracellular vesicles, has induced certain advantages including higher levels within fluids and lower operative expenses. Imaging biomarkers, started around 2004, are identified in vivo upon their binding by radiolabeled molecules subsequently revealed in the brain by positron emission tomography and/or other imaging techniques. A positive point for the latter approach is the quantitation of results, but expenses are much higher. At present, both types of biomarker are being extensively employed to study Alzheimer’s and other neurodegenerative diseases, investigated from the presymptomatic to mature stages. In conclusion, biomarkers have revolutionized scientific and medical research and practice. Diagnosis, which is often inadequate when based on medical criteria only, has been recently improved by the multiplicity and specificity of biomarkers. Analogous results have been obtained for prognosis. In contrast, improvement of therapy has been limited or fully absent, especially for Alzheimer’s in which progress has been inadequate. An urgent need at hand is therefore the progress of a new drug trial design together with patient management in clinical practice.


Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


Author(s):  
Tomas T. Roos ◽  
Megg G. Garcia ◽  
Isak Martinsson ◽  
Rana Mabrouk ◽  
Bodil Israelsson ◽  
...  

AbstractThe amyloid-beta peptide (Aβ) is thought to have prion-like properties promoting its spread throughout the brain in Alzheimer’s disease (AD). However, the cellular mechanism(s) of this spread remains unclear. Here, we show an important role of intracellular Aβ in its prion-like spread. We demonstrate that an intracellular source of Aβ can induce amyloid plaques in vivo via hippocampal injection. We show that hippocampal injection of mouse AD brain homogenate not only induces plaques, but also damages interneurons and affects intracellular Aβ levels in synaptically connected brain areas, paralleling cellular changes seen in AD. Furthermore, in a primary neuron AD model, exposure of picomolar amounts of brain-derived Aβ leads to an apparent redistribution of Aβ from soma to processes and dystrophic neurites. We also observe that such neuritic dystrophies associate with plaque formation in AD-transgenic mice. Finally, using cellular models, we propose a mechanism for how intracellular accumulation of Aβ disturbs homeostatic control of Aβ levels and can contribute to the up to 10,000-fold increase of Aβ in the AD brain. Our data indicate an essential role for intracellular prion-like Aβ and its synaptic spread in the pathogenesis of AD.


Development ◽  
2001 ◽  
Vol 128 (23) ◽  
pp. 4881-4890 ◽  
Author(s):  
Carole Mathis ◽  
Natalia Denisenko-Nehrbass ◽  
Jean-Antoine Girault ◽  
Emiliana Borrelli

The membrane of myelinated axons is divided into functionally distinct domains characterized by the enrichment of specific proteins. The mechanisms responsible for this organization have not been fully identified. To further address the role of oligodendrocytes in the functional segmentation of the axolemma in vivo, the distribution of nodal (Na+ channels, ankyrin G), paranodal (paranodin/contactin-associated-protein) and juxtaparanodal (Kv1.1 K+ channels) axonal markers, was studied in the brain of MBP-TK and jimpy mice. In MBP-TK transgenic mice, oligodendrocyte ablation was selectively induced by FIAU treatment before and during the onset of myelination. In jimpy mice, oligodendrocytes degenerate spontaneously within the first postnatal weeks after the onset of myelination. Interestingly, in MBP-TK mice treated for 1-20 days with FIAU, despite the ablation of more than 95% of oligodendrocytes, the protein levels of all tested nodal markers was unaltered. Nevertheless, these proteins failed to cluster in the nodal regions. By contrast, in jimpy mice, despite a diffused localization of paranodin, the formation of nodal clusters of Na+ channels and ankyrin G was observed. Furthermore, K+ channels clusters were transiently visible, but were in direct contact with nodal markers. These results demonstrate that the organization of functional domains in myelinated axons is oligodendrocyte dependent. They also show that the presence of these cells is a requirement for the maintenance of nodal and paranodal regions.


1992 ◽  
Vol 70 (6) ◽  
pp. 799-807 ◽  
Author(s):  
C. Brideau ◽  
C. Chan ◽  
S. Charleson ◽  
D. Denis ◽  
J. F. Evans ◽  
...  

MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-indol-2-yl]-2,2-dimethyl propanoic acid, previously L-686,708) is a potent inhibitor of leukotriene (LT) biosynthesis in intact human and elicited rat polymorphonuclear leukocytes (PMNLs) (IC50 values 3.1 and 6.1 nM, respectively) and in human, squirrel monkey, and rat whole blood (IC50 values 510, 69, and 9 nM, respectively). MK-0591 had no effect on rat 5-lipoxygenase. MK-0591 has a high affinity for 5-lipoxygenase activating protein (FLAP) as evidenced by an IC50 value of 1.6 nM in a FLAP binding assay and inhibition of the photoaffinity labelling of FLAP by two different photoaffinity ligands. Inhibition of activation of 5-lipoxygenase was shown through inhibition of the translocation of the enzyme from the cytosol to the membrane in human PMNLs. MK-0591 was a potent inhibitor of LT biosynthesis in vivo, first, following ex vivo challenge of blood obtained from treated rats and squirrel monkeys, second, in a rat pleurisy model, and, third, as monitored by inhibition of the urinary excretion of LTE4 in antigen-challenged allergic sheep. Inhibition of antigen-induced bronchoconstriction by MK-0591 was observed in inbred rats pretreated with methysergide, Ascaris-challenged squirrel monkeys, and Ascaris-challenged sheep (early and late phase response). These results indicate that MK-0591 is a potent inhibitor of LT biosynthesis both in vitro and in vivo indicating that the compound will be suitable for assessing the role of leukotrienes in pathological situations.Key words: leukotriene, 5-lipoxygenase, leukotriene inhibitor, bronchoconstriction, inflammation, 5-lipoxygenase activating protein.


2007 ◽  
Vol 51 (10) ◽  
pp. 3537-3545 ◽  
Author(s):  
Methee Chayakulkeeree ◽  
Thomas H. Rude ◽  
Dena L. Toffaletti ◽  
John R. Perfect

ABSTRACT Fatty acid synthase in the yeast Cryptococcus neoformans is composed of two subunits encoded by FAS1 and FAS2 genes. We inserted a copper-regulated promoter (P CTR4-2 ) to regulate FAS1 and FAS2 expression in Cryptococcus neoformans (strains P CTR4-2 /FAS1 and P CTR4-2 /FAS2, respectively). Both mutants showed growth rates similar to those of the wild type in a low-copper medium in which FAS1 and FAS2 were expressed, but even in the presence of exogenous fatty acids, strains were suppressed in growth under high-copper conditions. The treatment of C. neoformans with fluconazole was shown to have an increased inhibitory activity and even became fungicidal when either FAS1 or FAS2 expression was suppressed. Furthermore, a subinhibitory dose of fluconazole showed anticryptococcal activity in vitro in the presence of cerulenin, a fatty acid synthase inhibitor. In a murine model of pulmonary cryptococcosis, a tissue census of yeast cells in P CTR4-2 /FAS2 strain at day 7 of infection was significantly lower than that in mice treated with tetrathiomolybdate, a copper chelator (P < 0.05), and a yeast census of P CTR4-2 /FAS1 strain at day 14 of infection in the brain was lower in the presence of more copper. In fact, no positive cultures from the brain were detected in mice (with or without tetrathiomolybdate treatment) infected with the P CTR4-2 /FAS2 strain, which implies that this mutant did not reach the brain in mice. We conclude that both FAS1 and FAS2 in C. neoformans are essential for in vitro and in vivo growth in conditions with and without exogenous fatty acids and that FAS1 and FAS2 can potentially be fungicidal targets for C. neoformans with a potential for synergistic behavior with azoles.


Sign in / Sign up

Export Citation Format

Share Document