scholarly journals Perinatal development of, and effect of chemical pretreatment on, glycine N-acyltransferase activities in liver and kidney of rabbit and rat

1978 ◽  
Vol 172 (2) ◽  
pp. 293-299 ◽  
Author(s):  
M O James ◽  
J R Bend

The ontogenic development of glycine N-acyltransferase activity was studied in preparations of hepatic and renal mitochondria from the New Zealand White rabbit and the Sprague-Dawley rat. Preparations of hepatic mitochondria from the rat and the rabbit attain adult glycine N-acyltransferase specific activities by birth and 4 weeks of age respectively, whereas mitochondrial preparations from rabbit kidney do not attain adult activity until 4 months of age. Pretreatment of adult rats or immature rabbits with salicylic acid, benzoic acid or phenobarbital had little effect on glycine N-acyltransferase activity in vitro in liver or kidney.

1973 ◽  
Vol 51 (6) ◽  
pp. 772-782 ◽  
Author(s):  
A. G. Fazekas ◽  
T. Sandor

2-14C-Riboflavin was injected subcutaneously into young adult rats to study the biosynthesis of flavin mononucleotide (FMN) and flavin–adenine dinucleotide (FAD) in the liver and kidneys. Animals were sacrificed at different time intervals following the administration of labelled riboflavin (RF), and radioactive flavins were determined in their tissues by a newly devised method. Both tissues accumulated radioactive riboflavin rapidly and peak levels were obtained at 90 min after the injection, when over 80% of the total radioactivity of the liver was present in FAD. At this time the liver contained 17% of the injected dose of 2-14C-RF. The kidneys contained relatively high quantities of free RF due to the concentration and urinary excretion of the vitamin.Analysis of subcellular fractions of the liver of animals injected with 2-14C-RF revealed that most of the radioactivity was present in mitochondria and nuclei. The flavin nucleotides of rat liver cytosol became progressively associated with macromolecules in vivo. However, there was no significant binding of free RF by macromolecules in blood plasma or liver cytosol.Kinetic studies and incubations with liver slices indicated that RF freely diffuses into the liver cells, is rapidly converted into FAD, and becomes attached to apoenzymes. The tissue uptake of RF and FMN formation is considerably influenced by the concentration of RF present in the system, both in vivo and in vitro.


2007 ◽  
Vol 103 (2) ◽  
pp. 637-645 ◽  
Author(s):  
Amy Forbes ◽  
Mike Pickell ◽  
Mehry Foroughian ◽  
Li-Juan Yao ◽  
James Lewis ◽  
...  

Pulmonary surfactant is a lipid-protein material that is essential for normal lung function. Maintaining normal and consistent alveolar amounts of surfactant is in part dependent on clearance of surfactant by alveolar macrophages (AM). The present study utilized a rat model of AM depletion to determine the impact on surfactant pool sizes and function over time. Male Sprague-Dawley rats were anesthetized and intratracheally instilled with PBS-liposomes (PBS-L) or dichloromethylene diphosphonic acid (DMDP) containing liposomes (DMDP-L) and were killed at various time points up to 21 days for compliance measurements, AM cell counts, and surfactant analysis. AM numbers were significantly decreased 1, 2, and 3 days after instillation in DMDP-L vs. PBS-L, with 72% depletion at 3 days. AM numbers returned to normal levels by 5 days. In DMDP-L rats, there was a rapid increase in surfactant-phospholipid pools, showing a ninefold increase in the amount of surfactant in the lavage 3 days after liposome instillation. Surfactant accumulation progressed up to 7 days, with pools normalizing by 21 days. The increase in surfactant was due to increases in both subfractions of surfactant, the large aggregates (LA) and small aggregates. Surfactant protein A levels, relative to LA phospholipids, were not increased. There was a decreased extent of surfactant conversion in vitro for LA from DMDP-L rats compared with controls. It is concluded that the procedure of AM depletion significantly affects surfactant metabolism. The increased endogenous surfactant must be considered when utilizing the AM depletion model to study the role of these cells during lung insults.


1969 ◽  
Vol 114 (2) ◽  
pp. 343-350 ◽  
Author(s):  
S. H. Danovitch ◽  
L. Laster

1. Arylsulphatase activity was measured in stomach, proximal and distal third of small intestine, colon, liver and kidney of foetal and neonatal Sprague–Dawley rats and Swiss mice, with nitrocatechol sulphate as substrate. 2. The specific activity in the distal small intestine, but not in the stomach, proximal small intestine or colon, increased about fourfold between 5 and 16 days after birth in both conventional and germ-free rats. 3. No comparable increase occurred in the distal small intestine of the mouse. 4. The specific activity of acid phosphatase in the distal small intestine of the rat rose only slightly when the arylsulphatase activity increased. 5. The pH optimum and Michaelis constant of arylsulphatase activity of the distal small intestine were similar for 1-day-old, 9-day-old and adult rats. 6. When extracts of distal small intestine of 1-day-old and 9-day-old rats were incubated together, the arylsulphatase activities were additive.


2001 ◽  
Vol 281 (2) ◽  
pp. R661-R665 ◽  
Author(s):  
Sharon A. Rogers ◽  
Marc R. Hammerman

To determine whether transplanted metanephroi grow, differentiate, and function in hosts after preservation in vitro, we implanted metanephroi from embryonic day 15 ( E15) Sprague-Dawley rat embryos into the omentum of nonimmunosuppressed uninephrectomized Sprague-Dawley (host) rats. Metanephroi were either implanted directly or suspended in ice-cold University of Wisconsin (UW) preservation solution with or without added growth factors for 3 days before implantation. The size and extent of tissue differentiation preimplantation of E15 metanephroi implanted directly were not distinguishable from the size and differentiation of metanephroi preserved for 3 days. In contrast, E16 metanephroi were larger than E15 metanephroi preserved for 3 days. E16 metanephroi or E13 metanephroi grown in organ culture for 3 days contained more differentiated nephron structures than those in E15 metanephroi preserved for 3 days. By 4 wk posttransplantation, metanephroi that had been preserved for 3 days had grown and differentiated such that glomeruli, proximal and distal tubules, and collecting ducts with normal structure had developed. At 12 wk posttransplantation, inulin clearances of preserved metanephroi were comparable to those of metanephroi that had been implanted directly. Addition of growth factors to the UW solution enhanced inulin clearances. Here we show for the first time that functional kidneys develop from metanephroi transplanted from rat embryos to adult rats after as long as 3 days of preservation in vitro.


2006 ◽  
Vol 401 (2) ◽  
pp. 465-473 ◽  
Author(s):  
Guy Martin ◽  
Bernard Ferrier ◽  
Agnès Conjard ◽  
Mireille Martin ◽  
Rémi Nazaret ◽  
...  

Recent reports have indicated that 48–72 h of fasting, Type 1 diabetes and high-protein feeding induce gluconeogenesis in the small intestine of adult rats in vivo. Since this would (i) represent a dramatic revision of the prevailing view that only the liver and the kidneys are gluconeogenic and (ii) have major consequences in the metabolism, nutrition and diabetes fields, we have thoroughly re-examined this question in the situation reported to induce the highest rate of gluconeogenesis. For this, metabolically viable small intestinal segments from 72 h-fasted adult rats were incubated with [3-13C]glutamine as substrate. After incubation, substrate utilization and product accumulation were measured by enzymatic and NMR spectroscopic methods. Although the segments utilized [13C]glutamine at high rates and accumulated 13C-labelled products linearly for 30 min in vitro, no substantial glucose synthesis could be detected. This was not due to the re-utilization of [13C]glucose initially synthesized from [13C]glutamine. Arteriovenous metabolite concentration difference measurements across the portal vein-drained viscera of 72 h-fasted Wistar and Sprague–Dawley rats clearly indicated that glutamine, the main if not the only gluconeogenic precursor taken up, could not give rise to detectable glucose production in vivo. Therefore we challenge the view that the small intestine of the adult rat is a gluconeogenic organ.


1995 ◽  
Vol 5 (4) ◽  
pp. 223-232 ◽  
Author(s):  
Christine B. Jaeger

Enteric neurons and glia cells were isolated from adult Sprague Dawley rats. A procedure is described using a combination of microdissection and mechanical dissociation after enzyme treatment which yields large numbers of cell clusters suitable for tissue culture and grafting into the injured spinal cord. Differentiated enteric ganglia remained viable for at least 5 daysin vitroCultured neurons expressed histochemical reactivity for acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase. Nestin positive glia, which represented a population of non-myelinating enteric Schwann cells, could also be identified in cultures maintained 5 days or longerin vitro. The myenteric plexus of adult rats can provide a readily available source of neurons and Schwann cells for grafting to the central nervous system.


2006 ◽  
Vol 291 (1) ◽  
pp. H436-H440 ◽  
Author(s):  
S. Sapna ◽  
S. K. Ranjith ◽  
K. Shivakumar

Mechanisms underlying cardiac fibrogenesis in magnesium deficiency are unclear. It was reported earlier from this laboratory that serum from magnesium-deficient rats has a more pronounced stimulatory effect on cell proliferation, net collagen production, and superoxide generation in adult rat cardiac fibroblasts than serum from rats on the control diet. The profibrotic serum factors were, however, not identified. This study tested the hypothesis that circulating angiotensin II may modulate cardiac fibroblast activity in hypomagnesemic rats. Male Sprague-Dawley rats were pair-fed a magnesium-deficient (0.0008% Mg) or -sufficient (0.05%) diet for 6 days, and the effects of serum from these rats on [3H]thymidine and [3H]proline incorporation into cardiac fibroblasts from young adult rats were evaluated in the presence of losartan, an angiotensin II type 1 (AT1) receptor antagonist, and spironolactone, an aldosterone antagonist. Losartan and spironolactone markedly attenuated the stimulatory effects in vitro of serum from the magnesium-deficient and control groups, but the inhibitory effects were considerably higher in cells exposed to serum from magnesium-deficient animals. Circulating and cardiac tissue levels of angiotensin II were significantly elevated in magnesium-deficient animals (67.6% and 93.1%, respectively, vs. control). Plasma renin activity was 61.9% higher in magnesium-deficient rats, but serum angiotensin-converting enzyme activity was comparable in the two groups. Furthermore, preliminary experiments in vivo using enalapril supported a role for angiotensin II in magnesium deficiency. There was no significant difference between the groups in serum aldosterone levels. The findings suggest that circulating angiotensin II and aldosterone may stimulate fibroblast activity and contribute to a fibrogenic response in the heart in magnesium deficiency.


1983 ◽  
Vol 61 (7) ◽  
pp. 722-730 ◽  
Author(s):  
I. R. Senciall ◽  
G. Bullock ◽  
S. Rahal

Progesterone C21-hydroxylase activity has been demonstrated with rabbit kidney microsomes for the first time and the formation of 21-hydroxy-4-pregnen-3,20-dione (DOC) by rabbit liver and kidney microsomes has been quantitated. Considerable intraspecies variability in enzyme activity occurred with both tissues. The liver enzyme (Vmax = 1.28–38.0 nmol/mg protein per 30 min of incubation) was significantly more active than the kidney enzyme (Vmax = 0.028–0.28 nmol/mg protein per 30 min of incubation). Apparent KM values were 1.39 and 0.8 μM, respectively. Cytochrome c (10−5 M), potassium ferricyanide (10−3 M), and 2-methyl-1,2-di-3-pyridyl-1-propanone (metyrapone; 10−3 M) were strongly inhibitory with both tissues, whereas the liver microsomal system was less sensitive than the kidney to CO–air (90:10 v/v) inhibition. Metabolism of [14C]DOC to 4-pregnen-3,20-dione-21-oic (pregnenoic) and 4-androsten-3-one-17β-carboxylic (etienic) acids by liver microsomes and adrenal and ovary homogenates was differentially affected by several factors. CO–air (90:10 v/v), cytochrome c (10−5 M), and metyrapone (10−3 M) inhibited pregnenoic acid synthesis to a greater extent than etienic acid. Sodium cyanide had a stimulatory effect on the synthesis of pregnenoic acid by the liver but less consistent effects with other tissues. These results suggest that one or more cytochrome P-450 systems may be involved in the oxidation of progesterone through to pregnenoic acid by rabbit tissues.


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Tayebeh Dahmardeh ◽  
Nasser Mahdavi Shahri ◽  
Maryam M. Matin ◽  
Morteza Behnam Rassouli ◽  
Roya Lari

Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


Sign in / Sign up

Export Citation Format

Share Document