scholarly journals SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1

2004 ◽  
Vol 378 (1) ◽  
pp. 229-238 ◽  
Author(s):  
Miriam LLORIAN ◽  
Monique BEULLENS ◽  
Isabel ANDRÉS ◽  
Jose-Miguel ORTIZ ◽  
Mathieu BOLLEN

We have identified a polypeptide that was already known to interact with polyglutamine-tract-binding protein (PQBP)-1/Npw38 as a novel splicing factor and interactor of protein phosphatase-1, hence the name SIPP1 for splicing factor that interacts with PQBP-1 and PP1 (protein phosphotase 1). SIPP1 was inhibitory to PP1, and its inhibitory potency was increased by phosphorylation with protein kinase CK1. Two-hybrid and co-sedimentation analysis revealed that SIPP1 has two distinct PP1-binding domains and that the binding of SIPP1 with PP1 involves a RVXF (Arg-Val-Xaa-Phe) motif, which functions as a PP1-binding sequence in most interactors of PP1. Enhanced-green-fluorescent-protein-tagged SIPP1 was targeted exclusively to the nucleus and was enriched in the nuclear speckles, which represent storage/assembly sites of splicing factors. We have mapped a nuclear localization signal in the N-terminus of SIPP1, while the proline-rich C-terminal domain appeared to be required for its subnuclear targeting to the speckles. Finally, we found that SIPP1 is also a component of the spliceosomes and that a SIPP1-fragment inhibits splicing catalysis by nuclear extracts independent of its ability to interact with PP1.

2000 ◽  
Vol 113 (21) ◽  
pp. 3761-3768 ◽  
Author(s):  
I. Jagiello ◽  
A. Van Eynde ◽  
V. Vulsteke ◽  
M. Beullens ◽  
A. Boudrez ◽  
...  

NIPP1 is a nuclear subunit of protein phosphatase-1 (PP1) that colocalizes with pre-mRNA splicing factors in speckles. We report here that the nuclear and subnuclear targeting of NIPP1, when expressed in HeLa cells or COS-1 cells as a fusion protein with the enhanced-green-fluorescent protein (EGFP), are mediated by distinct sequences. While NIPP1-EGFP can cross the nuclear membrane passively, the active transport to the nucleus is mediated by two independent nuclear localization signals in the central domain of NIPP1, which partially overlap with binding site(s) for PP1. Furthermore, the concentration of NIPP1-EGFP in the nuclear speckles requires the ‘ForkHead-Associated’ domain in the N terminus. This domain is also required for the nuclear retention of NIPP1 when active transport is blocked. Our data imply that the nuclear and subnuclear targeting of NIPP1 are controlled independently.


2008 ◽  
Vol 19 (11) ◽  
pp. 4852-4862 ◽  
Author(s):  
Weiping Wang ◽  
P. Todd Stukenberg ◽  
David L. Brautigan

Mitosis in Saccharomyces cerevisiae depends on IPL1 kinase, which genetically interacts with GLC8. The metazoan homologue of GLC8 is inhibitor-2 (I-2), but its function is not understood. We found endogenous and ectopic I-2 localized to the spindle, midzone, and midbody of mitotic human epithelial ARPE-19 cells. Knockdown of I-2 by RNA interference produced multinucleated cells, with supernumerary centrosomes, multipolar spindles and lagging chromosomes during anaphase. These defects did not involve changes in levels of protein phosphatase-1 (PP1), and the multinuclear phenotype was rescued by overexpression of I-2. Appearance of multiple nuclei and supernumerary centrosomes required progression through the cell cycle and I-2 knockdown cells failed cytokinesis, as observed by time-lapse microscopy. Inhibition of Aurora B by hesperadin produced multinucleated cells and reduced H3S10 phosphorylation. I-2 knockdown enhanced this latter effect. Partial knockdown of PP1Cα prevented multiple nuclei caused by either knockdown of I-2 or treatment with hesperadin. Expression of enhanced green fluorescent protein-I-2 or hemagglutinin-I-2 made cells resistant to hesperadin. We propose that I-2 acts to enhance Aurora B by inhibiting specific PP1 holoenzymes that dephosphorylate Aurora B substrates necessary for chromosome segregation and cytokinesis. Conserved together throughout eukaryotic evolution, I-2, PP1 and Aurora B function interdependently during mitosis.


1998 ◽  
Vol 18 (11) ◽  
pp. 6805-6815 ◽  
Author(s):  
Jens Solsbacher ◽  
Patrick Maurer ◽  
F. Ralf Bischoff ◽  
Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.


2004 ◽  
Vol 286 (3) ◽  
pp. L506-L513 ◽  
Author(s):  
Christopher E. Helt ◽  
Rhonda J. Staversky ◽  
Yi-Jang Lee ◽  
Robert A. Bambara ◽  
Peter C. Keng ◽  
...  

This study investigates molecular mechanisms underlying cell cycle arrest when cells are exposed to high levels of oxygen (hyperoxia). Hyperoxia has previously been shown to increase expression of the cell cycle regulators p53 and p21. In the current study, we found that p53-deficient human lung adenocarcinoma H1299 cells failed to induce p21 or growth arrest in G1 when exposed to 95% oxygen. Instead, cells arrested in S and G2. Stable expression of p53 restored induction of p21 and G1 arrest without affecting mRNA expression of the other Cip or INK4 G1 kinase inhibitors. To confirm the role of p21 in G1 arrest, we created H1299 cells with tetracycline-inducible expression of enhanced green fluorescent protein (EGFP), EGFP fused to p21 (EGFp21), or EGFP fused to p27 (EGFp27), a related cell cycle inhibitor. The amino terminus of p21 and p27 bind cyclin-dependent kinases (Cdk), whereas the carboxy terminus of p21 binds the sliding clamp proliferating cell nuclear antigen (PCNA). EGFp21 or EGFp27, but not EGFP by itself, restored G1 arrest during hyperoxia. When separately overexpressed, the amino-terminal Cdk and carboxy-terminal PCNA binding domains of p21 each prevented cells from exiting G1 during exposure. These findings demonstrate that exposure in vitro to hyperoxia exerts G1 arrest through p53-dependent induction of p21 that suppresses Cdk and PCNA activity. Because PCNA also participates in DNA repair, these results raise the possibility that p21 also affects repair of oxidized DNA.


2000 ◽  
Vol 276 (15) ◽  
pp. 11821-11829 ◽  
Author(s):  
Henning Wellmann ◽  
Barbara Kaltschmidt ◽  
Christian Kaltschmidt

The mechanism by which signals such as those produced by glutamate are transferred to the nucleus may involve direct transport of an activated transcription factor to trigger long-term transcriptional changes. Ionotropic glutamate receptor activation or depolarization activates transcription factor NF-κB and leads to translocation of NF-κB from the cytoplasm to the nucleus. We investigated the dynamics of NF-κB translocation in living neurons by tracing the NF-κB subunit RelA (p65) with jellyfish green fluorescent protein. We found that green fluorescent protein-RelA was located in either the nucleus or cytoplasm and neurites, depending on the coexpression of the cognate inhibitor of NF-κB, IκB-α. Stimulation with glutamate, kainate, or potassium chloride resulted in a redistribution of NF-κB from neurites to the nucleus. This transport depended on an intact nuclear localization signal on RelA. Thus, in addition to its role as a transcription factor, NF-κB may be a signal transducer, transmitting transient glutamatergic signals from distant sites to the nucleus.


2008 ◽  
Vol 132 (1) ◽  
pp. 29-50 ◽  
Author(s):  
Alp Yaradanakul ◽  
Tzu-Ming Wang ◽  
Vincenzo Lariccia ◽  
Mei-Jung Lin ◽  
Chengcheng Shen ◽  
...  

Baby hamster kidney (BHK) fibroblasts increase their cell capacitance by 25–100% within 5 s upon activating maximal Ca influx via constitutively expressed cardiac Na/Ca exchangers (NCX1). Free Ca, measured with fluo-5N, transiently exceeds 0.2 mM with total Ca influx amounting to ∼5 mmol/liter cell volume. Capacitance responses are half-maximal when NCX1 promotes a free cytoplasmic Ca of 0.12 mM (Hill coefficient ≈ 2). Capacitance can return to baseline in 1–3 min, and responses can be repeated several times. The membrane tracer, FM 4-64, is taken up during recovery and can be released at a subsequent Ca influx episode. Given recent interest in signaling lipids in membrane fusion, we used green fluorescent protein (GFP) fusions with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and diacylglycerol (DAG) binding domains to analyze phospholipid changes in relation to these responses. PI(4,5)P2 is rapidly cleaved upon activating Ca influx and recovers within 2 min. However, PI(4,5)P2 depletion by activation of overexpressed hM1 muscarinic receptors causes only little membrane fusion, and subsequent fusion in response to Ca influx remains massive. Two results suggest that DAG may be generated from sources other than PI(4,5)P in these protocols. First, acylglycerols are generated in response to elevated Ca, even when PI(4,5)P2 is metabolically depleted. Second, DAG-binding C1A-GFP domains, which are brought to the cell surface by exogenous ligands, translocate rapidly back to the cytoplasm in response to Ca influx. Nevertheless, inhibitors of PLCs and cPLA2, PI(4,5)P2-binding peptides, and PLD modification by butanol do not block membrane fusion. The cationic agents, FM 4-64 and heptalysine, bind profusely to the extracellular cell surface during membrane fusion. While this binding might reflect phosphatidylserine (PS) “scrambling” between monolayers, it is unaffected by a PS-binding protein, lactadherin, and by polylysine from the cytoplasmic side. Furthermore, the PS indicator, annexin-V, binds only slowly after fusion. Therefore, we suggest that the luminal surfaces of membrane vesicles that fuse to the plasmalemma may be rather anionic. In summary, our results provide no support for any regulatory or modulatory role of phospholipids in Ca-induced membrane fusion in fibroblasts.


2005 ◽  
Vol 288 (2) ◽  
pp. R539-R546 ◽  
Author(s):  
Mikhiela Sherrod ◽  
Xuebo Liu ◽  
Xiaoji Zhang ◽  
Curt D. Sigmund

In the brain, angiotensinogen (AGT) is primarily expressed in astrocytes; brain ANG II derived from locally produced AGT has been shown to influence blood pressure. To better understand the molecular basis of AGT expression in the brain, we identified a human astrocytoma cell line, CCF-STTG1, that expresses endogenous AGT mRNA and produces AGT protein. Studies examining CCF-STTG1 cell AGT after N- and O-glycosidase suggest that AGT may not be posttranslationally modified by glycosylation in these cells as it is in plasma. Small amounts of AGT (5% of HepG2) were detected in the culture medium, suggesting a low rate of AGT secretion. Immunocytochemical examination of AGT in CCF-STTG1 cells revealed mainly nuclear localization. Although this has not been previously reported, it is consistent with nuclear localization of other serpin family members. To examine this further, we generated a fusion protein consisting of green fluorescent protein (GFP) and human AGT and examined subcellular localization by confocal microscopy after confirming expression of the fusion protein by Western blot. In CCF-STTG1 cells, a control GFP construct lacking AGT was mainly localized in the cytoplasm, whereas the GFP-AGT fusion protein was primarily localized in the nucleus. To map the location of a potential nuclear localization signal, overlapping 500-bp fragments of human AGT cDNA were fused in frame downstream of GFP. Although four of the fusion proteins exhibited either perinuclear or cytoplasmic localization, one fusion protein encoding the COOH terminus of AGT was localized in the nucleus. Importantly, nuclear localization of human AGT was confirmed in primary cultures of glial cells isolated from transgenic mice expressing the human AGT under the control of its own endogenous promoter. Our results suggest that AGT may have a novel intracellular role in the brain apart from its predicted endocrine function.


2001 ◽  
Vol 281 (2) ◽  
pp. C486-C495 ◽  
Author(s):  
Melissa H. Little ◽  
Lorine Wilkinson ◽  
Darren L. Brown ◽  
Michael Piper ◽  
Toshiya Yamada ◽  
...  

Drosophila slit is a secreted protein involved in midline patterning. Three vertebrate orthologs of the fly slit gene, Slit1, 2, and 3, have been isolated. Each displays overlapping, but distinct, patterns of expression in the developing vertebrate central nervous system, implying conservation of function. However, vertebrate Slit genes are also expressed in nonneuronal tissues where their cellular locations and functions are unknown. In this study, we characterized the cellular distribution and processing of mammalian Slit3 gene product, the least evolutionarily conserved of the vertebrate Slit genes, in kidney epithelial cells, using both cellular fractionation and immunolabeling. Slit3, but not Slit2, was predominantly localized within the mitochondria. This localization was confirmed using immunoelectron microscopy in cell lines and in mouse kidney proximal tubule cells. In confluent epithelial monolayers, Slit3 was also transported to the cell surface. However, we found no evidence of Slit3 proteolytic processing similar to that seen for Slit2. We demonstrated that Slit3 contains an NH2-terminal mitochondrial localization signal that can direct a reporter green fluorescent protein to the mitochondria. The equivalent region from Slit1 cannot elicit mitochondrial targeting. We conclude that Slit3 protein is targeted to and localized at two distinct sites within epithelial cells: the mitochondria, and then, in more confluent cells, the cell surface. Targeting to both locations is driven by specific NH2-terminal sequences. This is the first examination of Slit protein localization in nonneuronal cells, and this study implies that Slit3 has potentially unique functions not shared by other Slit proteins.


2000 ◽  
Vol 151 (7) ◽  
pp. 1369-1380 ◽  
Author(s):  
Beatrice M. Tam ◽  
Orson L. Moritz ◽  
Lawrence B. Hurd ◽  
David S. Papermaster

Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The fusion proteins were targeted to membranes via lipid modifications (palmitoylation and myristoylation) as opposed to membrane spanning domains. Membrane association was found to be necessary but not sufficient for efficient ROS localization. A GFP fusion protein containing only the cytoplasmic COOH-terminal 44 amino acids of Xenopus rhodopsin localized exclusively to ROS membranes. Chimeras between rhodopsin and α adrenergic receptor COOH-terminal sequences further refined rhodopsin's ROS localization signal to its distal eight amino acids. Mutations/deletions of this region resulted in partial delocalization of the fusion proteins to rod inner segment (RIS) membranes. The targeting and transport of endogenous wild-type rhodopsin was unaffected by the presence of mislocalized GFP fusion proteins.


Sign in / Sign up

Export Citation Format

Share Document