scholarly journals Modulation of differential transcription of tRNA genes through chromatin organization

2005 ◽  
Vol 391 (2) ◽  
pp. 371-381 ◽  
Author(s):  
Akhila Parthasarthy ◽  
Karumathil P. Gopinathan

In higher eukaryotes, tRNA multigene families comprise several copies encoding the same tRNA isoacceptor species. Of the 11 copies of a tRNA1Gly family from the mulberry silkworm Bombyx mori, individual members are differentially transcribed in vivo in the B. mori-derived BmN cell lines and in vitro in silk gland nuclear extracts. These genes have identical coding regions and hence harbour identical internal control sequences (the A and B boxes), but differ significantly in their 5′ and 3′ flanking regions. In the present study, we demonstrate the role of chromatin structure in the down-regulation of the poorly expressed copy, tRNA1Gly-6,7. Distinct footprints in the 5′-upstream region of the poorly transcribed gene in vitro as well as in vivo suggested the presence of nucleosomes. A theoretical analysis of the immediate upstream sequence of this gene copy also revealed a high propensity of nucleosome formation. The low transcription of tRNA1Gly-6,7 DNA was further impaired on assembly into chromatin and this inhibition was relieved by externally supplemented TFIIIC with an associated histone acetyltransferase activity. The inhibition due to nucleosome assembly was absent when the 5′-upstream region beyond −53 nt was deleted or entirely swapped with the 5′-upstream region of the highly transcribed gene copy, which does not position a nucleosome. Footprinting of the in vitro assembled tRNA1Gly-6,7 chromatin confirmed the presence of a nucleosome in the immediate upstream region potentially masking TFIIIB binding. Addition of TFIIIC unmasked the footprints present on account of the nucleosome. Our studies provide the first evidence for nucleosomal repression leading to differential expression of individual members from within a tRNA multigene family.

1986 ◽  
Vol 6 (11) ◽  
pp. 3928-3933
Author(s):  
M Tsuda ◽  
S Hirose ◽  
Y Suzuki

The addition of exogenous histones has an inhibitory effect on fibroin gene transcription in posterior silk gland extracts. The histones probably disturb a process in complex formation, because when transcription complexes were constructed by preincubation of the templates with the extracts, the inhibitory effect of histones was greatly reduced. Transcription of a fibroin gene construct, pFb5' delta-238, having the upstream region beyond the TATA box was relatively less inhibited than that of pFb5' delta-44 lacking the upstream region. This tendency toward differential inhibition was observed in the silk gland extracts but not in a HeLa cell extract and persisted even after complex formation in the silk gland extracts, suggesting a specific interaction of the upstream region with some factors in the extracts. The complexes formed on pFb5' delta-44 are probably more susceptible to the inhibitory effect of histones. On the basis of these results we propose a participation of the upstream region of the fibroin gene in the formation of stable transcription complexes at the promoter through an interaction with specific factors in the silk gland. Since the transcription-enhancing effect via the upstream region is augmented at a high histone/DNA ratio, it may mimic the in vivo situation in which the fibroin gene can be transcribed in the posterior silk gland even in the presence of excess suppressive materials.


1986 ◽  
Vol 6 (11) ◽  
pp. 3928-3933 ◽  
Author(s):  
M Tsuda ◽  
S Hirose ◽  
Y Suzuki

The addition of exogenous histones has an inhibitory effect on fibroin gene transcription in posterior silk gland extracts. The histones probably disturb a process in complex formation, because when transcription complexes were constructed by preincubation of the templates with the extracts, the inhibitory effect of histones was greatly reduced. Transcription of a fibroin gene construct, pFb5' delta-238, having the upstream region beyond the TATA box was relatively less inhibited than that of pFb5' delta-44 lacking the upstream region. This tendency toward differential inhibition was observed in the silk gland extracts but not in a HeLa cell extract and persisted even after complex formation in the silk gland extracts, suggesting a specific interaction of the upstream region with some factors in the extracts. The complexes formed on pFb5' delta-44 are probably more susceptible to the inhibitory effect of histones. On the basis of these results we propose a participation of the upstream region of the fibroin gene in the formation of stable transcription complexes at the promoter through an interaction with specific factors in the silk gland. Since the transcription-enhancing effect via the upstream region is augmented at a high histone/DNA ratio, it may mimic the in vivo situation in which the fibroin gene can be transcribed in the posterior silk gland even in the presence of excess suppressive materials.


2006 ◽  
Vol 27 (5) ◽  
pp. 1545-1557 ◽  
Author(s):  
Priscilla Braglia ◽  
Sandra L. Dugas ◽  
David Donze ◽  
Giorgio Dieci

ABSTRACT A key event in tRNA gene (tDNA) transcription by RNA polymerase (Pol) III is the TFIIIC-dependent assembly of TFIIIB upstream of the transcription start site. Different tDNA upstream sequences bind TFIIIB with different affinities, thereby modulating tDNA transcription. We found that in the absence of Nhp6 proteins, the influence of the 5′-flanking region on tRNA gene transcription is dramatically enhanced in Saccharomyces cerevisiae. Expression of a tDNA bearing a suboptimal TFIIIB binding site, but not of a tDNA preceded by a strong TFIIIB binding region, was strongly dependent on Nhp6 in vivo. Upstream sequence-dependent stimulation of tRNA gene transcription by Nhp6 could be reproduced in vitro, and Nhp6 proteins were found associated with tRNA genes in yeast cells. We also show that both transcription and silencing barrier activity of a tDNAThr at the HMR locus are compromised in the absence of Nhp6. Our data suggest that Nhp6 proteins are important components of Pol III chromatin templates that contribute both to the robustness of tRNA gene expression and to positional effects of Pol III transcription complexes.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6718 ◽  
Author(s):  
Kochi Toyomane ◽  
Yoshikazu Furuta ◽  
Daisuke Fujikura ◽  
Hideaki Higashi

The anthrax toxin is a virulence factor produced by the bacteriumBacillus anthracis. Transcription of anthrax toxin genes is controlled by the transcription factor AtxA. Thus, AtxA is thought to be a key factor for the pathogenicity ofB. anthracis. Despite its important role inB. anthracisinfection, the molecular mechanism by which AtxA controls expression of anthrax toxin remains unclear. This study aimed to characterize the molecular mechanism of AtxA-mediated regulation of protective antigen (PA), a component of anthrax toxin encoded by thepagAgene. First, the interaction between the upstream region ofpagAand AtxA was evaluated in vivo by constructing a transcriptional fusion of the upstream region with an auxotrophic marker. The results showed that (i) the upstream region ofpagAsuppressed transcription of the downstream gene and (ii) AtxA recovered suppressed transcription. Second, in vitro analysis using a gel mobility shift assay was performed to evaluate binding specificity of the AtxA–DNA interaction. The result showed sequence-independent binding of AtxA to DNA. Taken together, our findings suggest that the expression of PA was suppressed by the upstream region ofpagAand that an interaction of AtxA and the upstream region releases the suppression.


1986 ◽  
Vol 6 (7) ◽  
pp. 2663-2673 ◽  
Author(s):  
M C Strobel ◽  
J Abelson

The Saccharomyces cerevisiae leucine-inserting amber suppressor tRNA gene SUP53 (a tRNALeu3 allele) was used to investigate the relationship between precursor tRNA structure and mature tRNA function. This gene encodes a pre-tRNA which contains a 32-base intron. The mature tRNASUP53 contains a 5-methylcytosine modification of the anticodon wobble base. Mutations were made in the SUP53 intron. These mutant genes were transcribed in an S. cerevisiae nuclear extract preparation. In this extract, primary tRNA gene transcripts are end-processed and base modified after addition of cofactors. The base modifications made in vitro were examined, and the mutant pre-tRNAs were analyzed for their ability to serve as substrates for partially purified S. cerevisiae tRNA endonuclease and ligase. Finally, the suppressor function of these mutant tRNA genes was assayed after their integration into the S. cerevisiae genome. Mutant analysis showed that the totally intact precursor tRNA, rather than any specific sequence or structure of the intron, was necessary for efficient nonsense suppression by tRNASUP53. Less efficient suppressor activity correlated with the absence of the 5-methylcytosine modification. Most of the intron-altered precursor tRNAs were successfully spliced in vitro, indicating that modifications are not critical for recognition by the tRNA endonuclease and ligase.


2015 ◽  
Vol 3 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Linhao Li ◽  
Yuna Qian ◽  
Chongwen Lin ◽  
Haibin Li ◽  
Chao Jiang ◽  
...  

Silk middle gland extracted sericin protein based electrospun nanofibrous scaffolds with excellent biocompatibility have been developed for tissue engineering applications.


2003 ◽  
Vol 23 (11) ◽  
pp. 4000-4012 ◽  
Author(s):  
Ludovic Delage ◽  
André Dietrich ◽  
Anne Cosset ◽  
Laurence Maréchal-Drouard

ABSTRACT Some of the mitochondrial tRNAs of higher plants are nuclearly encoded and imported into mitochondria. The import of tRNAs encoded in the nucleus has been shown to be essential for proper protein translation within mitochondria of a variety of organisms. Here, we report the development of an in vitro assay for import of nuclearly encoded tRNAs into plant mitochondria. This in vitro system utilizes isolated mitochondria from Solanum tuberosum and synthetic tRNAs transcribed from cloned nuclear tRNA genes. Although incubation of radioactively labeled in vitro-transcribed tRNAAla, tRNAPhe, and tRNAMet-e with isolated potato mitochondria resulted in importation, as measured by nuclease protection, the amount of tRNA transcripts protected at saturation was at least five times higher for tRNAAla than for the two other tRNAs. This difference in in vitro saturation levels of import is consistent with the in vivo localization of these tRNAs, since cytosolic tRNAAla is naturally imported into potato mitochondria whereas tRNAPhe and tRNAMet-e are not. Characterization of in vitro tRNA import requirements indicates that mitochondrial tRNA import proceeds in the absence of any added cytosolic protein fraction, involves at least one protein component on the surface of mitochondria, and requires ATP-dependent step(s) and a membrane potential.


1991 ◽  
Vol 11 (5) ◽  
pp. 2832-2841
Author(s):  
N Mechti ◽  
M Piechaczyk ◽  
J M Blanchard ◽  
P Jeanteur ◽  
B Lebleu

A strong block to the elongation of nascent RNA transcripts by RNA polymerase II occurs in the 5' part of the mammalian c-fos proto-oncogene. In addition to the control of initiation, this mechanism contributes to transcriptional regulation of the gene. In vitro transcription experiments using nuclear extracts and purified transcription templates allowed us to map a unique arrest site within the mouse first intron 385 nucleotides downstream from the promoter. This position is in keeping with that estimated from nuclear run-on assays performed with short DNA probes and thus suggests that it corresponds to the actual block in vivo. Moreover, we have shown that neither the c-fos promoter nor upstream sequences are absolute requirements for an efficient transcription arrest both in vivo and in vitro. Finally, we have characterized a 103-nucleotide-long intron 1 motif comprising the arrest site and sufficient for obtaining the block in a cell-free transcription assay.


1990 ◽  
Vol 10 (6) ◽  
pp. 2832-2839
Author(s):  
A S Ponticelli ◽  
K Struhl

The promoter region of the Saccharomyces cerevisiae his3 gene contains two TATA elements, TC and TR, that direct transcription initiation to two sites designated +1 and +13. On the basis of differences between their nucleotide sequences and their responsiveness to upstream promoter elements, it has previously been proposed that TC and TR promote transcription by different molecular mechanisms. To begin a study of his3 transcription in vitro, we used S. cerevisiae nuclear extracts together with various DNA templates and transcriptional activator proteins that have been characterized in vivo. We demonstrated accurate transcription initiation in vitro at the sites used in vivo, transcriptional activation by GCN4, and activation by a GAL4 derivative on various gal-his3 hybrid promoters. In all cases, transcription stimulation was dependent on the presence of an acidic activation region in the activator protein. In addition, analysis of promoters containing a variety of TR derivatives indicated that the level of transcription in vitro was directly related to the level achieved in vivo. The results demonstrated that the in vitro system accurately reproduced all known aspects of in vivo his3 transcription that depend on the TR element. However, in striking contrast to his3 transcription in vivo, transcription in vitro yielded approximately 20 times more of the +13 transcript than the +1 transcript. This result was not due to inability of the +1 initiation site to be efficiently utilized in vitro, but rather it reflects the lack of TC function in vitro. The results support the idea that TC and TR mediate transcription from the wild-type promoter by distinct mechanisms.


1988 ◽  
Vol 8 (10) ◽  
pp. 4557-4560
Author(s):  
O Bakker ◽  
J N Philipsen ◽  
B C Hennis ◽  
G Ab

The estrogen-dependent binding of a protein to the upstream region of the chicken vitellogenin gene was detected by using in vivo dimethyl sulfate, genomic DNase I, and in vitro exonuclease III footprinting. The site is located between base pairs -848 and -824, and its sequence resembles that of the nuclear factor I binding site. The results suggest that a nuclear factor binding to this site is involved in the regulation of the vitellogenin gene.


Sign in / Sign up

Export Citation Format

Share Document