scholarly journals Inhibition of MMP-2 gelatinolysis by targeting exodomain–substrate interactions

2007 ◽  
Vol 406 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Xiaoping Xu ◽  
Zhihua Chen ◽  
Yao Wang ◽  
Lynda Bonewald ◽  
Bjorn Steffensen

MMP-2 (matrix metalloproteinase 2) contains a CBD (collagen-binding domain), which is essential for positioning gelatin substrate molecules relative to the catalytic site for cleavage. Deletion of the CBD or disruption of CBD-mediated gelatin binding inhibits gelatinolysis by MMP-2. To identify CBD-binding sites on type I collagen and collagen peptides with the capacity to compete CBD binding of gelatin and thereby inhibit gelatinolysis by MMP-2, we screened a one-bead one-peptide combinatorial peptide library with recombinant CBD as bait. Analyses of sequences from the CBD-binding peptides pointed to residues 715–721 in human α1(I) collagen chain as a binding site for CBD. A peptide (P713) including this collagen segment was synthesized for analyses. In SPR (surface plasmon resonance) assays, the CBD and MMP-2E404A, a catalytically inactive MMP-2 mutant, both bound immobilized P713 in a concentration-dependent manner, but not a scrambled control peptide. Furthermore, P713 competed gelatin binding by the CBD and MMP-2E404A. In control assays, neither of the non-collagen binding alkylated CBD or MMP-2 with deletion of CBD (MMP-2ΔCBD) bound P713. Consistent with the exodomain functions of the CBD, P713 inhibited ∼90% of the MMP-2 gelatin cleavage, but less than 20% of the MMP-2 activity on a peptide substrate (NFF-1) which does not require the CBD for cleavage. Confirming the specificity of the inhibition, P713 did not alter MMP-2ΔCBD or MMP-8 activities. These experiments identified a CBD-binding site on type I collagen and demonstrated that a corresponding synthetic peptide can inhibit hydrolysis of type I and IV collagens by competing CBD-mediated gelatin binding to MMP-2.

1995 ◽  
Vol 108 (4) ◽  
pp. 1629-1637 ◽  
Author(s):  
D. Tuckwell ◽  
D.A. Calderwood ◽  
L.J. Green ◽  
M.J. Humphries

Integrins alpha 1 beta 1 and alpha 2 beta 1 are major cellular receptors for collagens. The alpha 1 and alpha 2 subunits contain a approximately 200 amino acid inserted domain (I-domain) in their N-terminal region and, because of the homology between the I-domains and the collagen-binding A-domains of von Willebrand factor, it has been suggested that the I-domains might mediate the collagen-binding functions of alpha 1 beta 1 and alpha 2 beta 1. In order to fully investigate this hypothesis, we have generated recombinant human alpha 2 I-domain (r alpha 2I) by reverse transcriptase-polymerase chain reaction/bacterial expression and tested its ability to mediate the collagen-binding functions of alpha 2 beta 1. R alpha 2 I binds specifically to type I collagen in a concentration-dependent manner: binding is cation dependent and, like the complete receptor, is supported by magnesium and manganese ions but not by calcium ions. R alpha 2I is recognised by anti-functional anti-alpha 2 monoclonal antibodies 6F1, 5E8 and P1E6 in capture ELISAs, and anti-functional antibodies inhibited r alpha 2I-collagen binding. In addition, r alpha 2I inhibits cell spreading on collagen. R alpha 2I is therefore a collagen-binding domain and can account for many of the collagen-binding functions of integrin alpha 2 beta 1. We have also determined the collagen specificity of r alpha 2I and found that it binds types I, II and XI collagen.


2006 ◽  
Vol 74 (11) ◽  
pp. 6356-6364 ◽  
Author(s):  
Angela S. Barbosa ◽  
Patricia A. E. Abreu ◽  
Fernanda O. Neves ◽  
Marina V. Atzingen ◽  
Mônica M. Watanabe ◽  
...  

ABSTRACT Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Several pathogens, including spirochetes, have been shown to express surface proteins that interact with the extracellular matrix (ECM). This adhesin-mediated binding process seems to be a crucial step in the colonization of host tissues. This study examined the interaction of putative leptospiral outer membrane proteins with laminin, collagen type I, collagen type IV, cellular fibronectin, and plasma fibronectin. Six predicted coding sequences selected from the Leptospira interrogans serovar Copenhageni genome were cloned, and proteins were expressed, purified by metal affinity chromatography, and characterized by circular dichroism spectroscopy. Their capacity to mediate attachment to ECM components was evaluated by binding assays. We have identified a leptospiral protein encoded by LIC12906, named Lsa24 (leptospiral surface adhesin; 24 kDa) that binds strongly to laminin. Attachment of Lsa24 to laminin was specific, dose dependent, and saturable. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. Triton X-114-solubilized extract of L. interrogans and phase partitioning showed that Lsa24 was exclusively in the detergent phase, indicating that it is a component of the leptospiral membrane. Moreover, Lsa24 partially inhibited leptospiral adherence to immobilized laminin. This newly identified membrane protein may play a role in mediating adhesion of L. interrogans to the host. To our knowledge, this is the first leptospiral adhesin with laminin-binding properties reported to date.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiejing Yan ◽  
Mimi Hao ◽  
Yu Han ◽  
Jingya Ruan ◽  
Dandan Zheng ◽  
...  

In the process of continuing to investigate ultraviolet b (UVB) irradiation protective constituents from Oplopanax elatus stems, nine new sesquiterpenes, named as eurylosesquiterpenosides A–D (1–4), eurylosesquiterpenols E–I (5–9), and ten known ones (10–19) were gained. Their structures were established by analysis of their NMR spectroscopic data, and electronic circular dichroism calculations were applied to define their absolute configurations. In addition, UVB induced HaCaT cells were used to study their anti-photoaging activities and mechanism. The results consolidated that compounds 7, 11, and 14 could improve the survival rate of HaCaT cells in concentration dependent manner at 10, 25, and 50 μM. Furthermore, western blot assay suggested that all of them could inhibit the expression of matrix metalloproteinase-1 (MMP-1), and increase the level of type I collagen markedly. Compounds 11 and 14 could reduce the phosphorylation of extracellular signal-regulated kinase and p38, respectively. Besides, compounds 7, 11, and 14 could significantly down-regulate the expression of inflammation related protein, such as tumor necrosis factor-α and cyclooxygenase-2, which indicated that they played anti-photoaging activities by reducing MMP-1 expression via down-regulating the production of inflammatory mediators and cytokines in UVB-induced HaCaT cells.


1989 ◽  
Vol 94 (2) ◽  
pp. 361-369
Author(s):  
R.C. Ogle ◽  
A.J. Potts ◽  
M. Yacoe ◽  
C.D. Little

Collagen binding proteins (CBP) are hydrophobic, cell surface polypeptides, isolated by collagen affinity chromatography. Antibodies to CBPs inhibit the attachment of embryonic chicken heart fibroblasts to native type I collagen fibrils in a dose-dependent manner. The CBP antibodies also induce rounding and detachment of cells adherent to a planar substratum. This process of antibody-mediated substratum detachment resulted in a clustering of CBP and cell-associated extracellular matrix at the cell surface, and the rearrangement of filamentous actin. Other functional studies showed that cells grown within a three-dimensional gel of type I collagen cannot be immunostained at the cell surface with CBP antibodies. However, treatment of cultures with purified collagenase, unmasks immunoreactive sites and permits strong cell surface immunolabeling. This result suggests that collagen sterically blocks antibody access to CBP. Finally, we show that antibodies to CBP recognize purified avian integrin beta subunits; and that antibodies to avian integrins recognize a 100,000 Mr CBP. These data demonstrate that chicken embryonic fibroblasts possess surface polypeptides that mediate adhesion to type I collagen, and suggest that two of these proteins are related to the integrin family.


2002 ◽  
Vol 277 (47) ◽  
pp. 45400-45407 ◽  
Author(s):  
Christina Meyer ◽  
Luigi Notari ◽  
S. Patricia Becerra

2002 ◽  
Vol 283 (2) ◽  
pp. R487-R495 ◽  
Author(s):  
Tetsu Akimoto ◽  
Helen Liapis ◽  
Marc R. Hammerman

To delineate the roles of O2 and vascular endothelial growth factor (VEGF) in the process of angiogenesis from the embryonic aorta, we cultured mouse embryonic aorta explants (thoracic level to lateral vessels supplying the mesonephros and metanephros) in a three-dimensional type I collagen gel matrix. During 8 days of culture under 5% O2, but not room air, the addition of VEGF to explants stimulated the formation of CD31-positive, Flk-1-positive, Gs-IB4-positive structures in a concentration-dependent manner. Electron microscopy showed the structures to be capillary-like. VEGF-induced capillary-like structure formation was inhibited by sequestration of VEGF via addition of soluble Flt-1 fusion protein or anti-VEGF antibodies. Expression of Flk-1, but not Flt-1, was increased in embryonic aorta cultured under 5% O2 relative to room air. Our data suggest that low O2 upregulates Flk-1 expression in embryonic aorta in vitro and renders it more responsive to VEGF.


1982 ◽  
Vol 95 (3) ◽  
pp. 747-751 ◽  
Author(s):  
B D Goldberg

Efficient binding of native, soluble 125I-labeled type I rat collagen to mouse 3T3 fibroblast monolayers requires prior warming of the ligand to 35-37 degrees C for 10-30 min. Decreased binding at high ligand concentrations is ascribed to ligand-ligand interactions rather than to negative cooperativity. Addition of bacterial collagenase to monolayers labeled with the 125I-ligand releases a constant fraction (80%) of the bound ligand over a 2-h interval at 37 degrees C, indicating that little of the ligand becomes inaccessible by pinocytosis. Colchicine (10(-7) M) and vinblastine (5 X 10(-8) M) do not inhibit binding by morphologically intact monolayers. Cytochalasins and concanavalin A show dose-related inhibition of binding by intact monolayers that is due to a reduction in the number of available binding sites rather than to a change in binding site affinity. The collagen binding site on the fibroblast surface is proposed as an organizing center for the assembly of periodic type I collagen fibrils.


2003 ◽  
Vol 284 (2) ◽  
pp. C371-C377 ◽  
Author(s):  
Tetsu Akimoto ◽  
Marc R. Hammerman

To delineate the roles that oxygen and fibroblast growth factors (FGFs) play in the process of angiogenesis from the embryonic aorta, we cultured mouse embryonic aorta explants (thoracic level to lateral vessels supplying the mesonephros and metanephros) in a three-dimensional type I collagen gel matrix. During 8 days of culture under 5% O2, but not room air, the addition of FGF2 to explants stimulated the formation of Gs-IB4-positive, CD31-positive, and Flk-1-positive microvessels in a concentration-dependent manner. FGF2-stimulated microvessel formation was inhibited by sequestration of FGF2 via addition of soluble FGF receptor (FGFR) chimera protein or anti-FGF2 antibodies. FGFR1 and FGFR2 were present on explants. Levels of FGFR1, but not FGFR2, were increased in embryonic aorta cultured under 5% O2 relative to room air. Our data suggest that low oxygen upregulates FGFR1 expression in embryonic aorta in vitro and renders it more responsive to FGF2.


2021 ◽  
Vol 41 ◽  
pp. 100959
Author(s):  
Long-Jie Yan ◽  
Le-Chang Sun ◽  
Kai-Yuan Cao ◽  
Yu-Lei Chen ◽  
Ling-Jing Zhang ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


Sign in / Sign up

Export Citation Format

Share Document