scholarly journals Regulation of a Drosophila melanogaster cGMP-specific phosphodiesterase by prenylation and interaction with a prenyl-binding protein

2008 ◽  
Vol 414 (3) ◽  
pp. 363-374 ◽  
Author(s):  
Jonathan P. Day ◽  
Vaughn Cleghon ◽  
Miles D. Houslay ◽  
Shireen-A. Davies

Post-translational modification by isoprenylation is a pivotal process for the correct functioning of many signalling proteins. The Drosophila melanogaster cGMP-PDE (cGMP-specific phosphodiesterase) DmPDE5/6 possesses a CaaX-box prenylation signal motif, as do several novel cGMP-PDEs from insect and echinoid species (in CaaX, C is cysteine, a is an aliphatic amino acid and X is ‘any’ amino acid). DmPDE5/6 is prenylated in vivo at Cys1128 and is localized to the plasma membrane when expressed in Drosophila S2 cells. Site-directed mutagenesis of the prenylated cysteine residue (C1128S-DmPDE5/6), pharmacological inhibition of prenylation or co-expression of DmPrBP (Drosophila prenyl-binding protein)/δ each alters the subcellular localization of DmPDE5/6. Thus prenylation constitutes a critical post-translational modification of DmPDE5/6 for membrane targeting. Co-immunoprecipitation and subcellular-fractionation experiments have shown that DmPDE5/6 interacts with DmPrBP/δ in Drosophila S2 cells. Transgenic lines allow targeted expression of tagged prenylation-deficient C1128S-DmPDE5/6 in Type I (principal) cells in Drosophila Malpighian tubules, an in vivo model for DmPDE5/6 function. In contrast with wild-type DmPDE5/6, which was exclusively associated with the apical membrane, the C1128S-DmPDE5/6 mutant form was located primarily in the cytosol, although some residual association occurred at the apical membrane. Despite the profound change in intracellular localization of C1128S-DmPDE5/6, active transport of cGMP is affected in the same way as it is by DmPDE5/6. This suggests that, in addition to prenylation and interaction with DmPrBP/δ, further functional membrane-targeting signals exist within DmPDE5/6.

2001 ◽  
Vol 75 (22) ◽  
pp. 11218-11221 ◽  
Author(s):  
Brendan N. Lilley ◽  
Hidde L. Ploegh ◽  
Rebecca S. Tirabassi

ABSTRACT Several herpesviruses encode Fc receptors that may play a role in preventing antibody-mediated clearance of the virus in vivo. Human cytomegalovirus (HCMV) induces an Fc-binding activity in cells upon infection, but the gene that encodes this Fc-binding protein has not been identified. Here, we demonstrate that the HCMV AD169 open reading frame TRL11 and its identical copy, IRL11, encode a type I membrane glycoprotein that possesses IgG Fc-binding capabilities.


1998 ◽  
Vol 123 (4) ◽  
pp. 493-499 ◽  
Author(s):  
Kyu H. Chung ◽  
Dennis E. Buetow ◽  
Schuyler S. Korban

A nuclear gene, Lhcb1*Pp1, encoding a light-harvesting chlorophyll a/b-binding protein of photosystem II has been isolated from peach [Prunus persica (L.) Batsch. `Stark Earliglo'] leaf genomic DNA, cloned, and sequenced. This gene encodes a precursor polypeptide of 267 amino acids with a transit peptide of 34 and a type I mature protein of 233 amino acids. The amino acid sequence of the mature polypeptide is 89% to 94% and 80% to 94% similar to those encoded by type I Lhcb genes of annual and other woody plants, respectively. In contrast, the amino acid sequence of the peach transit peptide is less conserved being 47% to 69% similar to those of annual plants and only 17% to 22% similar to those of other woody plants. The peach gene was used as a probe for Lhcb gene expression. Lhcb mRNA is detected in leaves of field-grown trees during June to October. Lhcb mRNA is detected at a high level in leaves of peach shoots grown in tissue culture in the light, but only at a trace level in leaves grown in the dark. Some Lhcb genes appear to be light-modulated in stems. Lhcb1*Ppl contains four potential polyadenylation sites. S1 nuclease analysis detected transcripts of the sizes expected from each of the four polyadenylation sites. All four are found in leaves of light-grown shoots and of field-grown trees throughout the growing season. In contrast, only three are detected in stems of light-grown shoots.


2009 ◽  
Vol 29 (10) ◽  
pp. 2899-2912 ◽  
Author(s):  
Mithu Majumder ◽  
Ibrahim Yaman ◽  
Francesca Gaccioli ◽  
Vladimir V. Zeenko ◽  
Chuanping Wang ◽  
...  

ABSTRACT The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5′ untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.


Author(s):  
Belén Borrego ◽  
Sandra Moreno ◽  
Nuria de la Losa ◽  
Friedemann Weber ◽  
Alejandro Brun

Rift valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes an important disease in ruminants, with great economic losses. The infection can be also transmitted to humans; therefore it is considered a major threat to both human and animal health. In a previous work, we described a novel RVFV variant selected in cell culture in the presence of the antiviral agent favipiravir that was highly attenuated in vivo. This variant displayed 24 amino acid substitutions in different viral proteins when compared to its parental viral strain, two of them located in the NSs protein that is known to be the major virulence factor of RVFV. By means of a reverse genetics system, in this work we have analyzed the effect that one of these substitutions, P82L, has in viral attenuation in vivo. Rescued viruses carrying this single amino acid change were clearly attenuated in BALB/c mice while their growth in an IFN-competent cell line as well as the production of IFN-β did not seem to be affected. However, the pattern of nuclear NSs accumulation was modified in cells infected with the mutant viruses. These results unveil a new RVFV virulence marker highlighting the multiple ways of NSs protein to modulate viral infectivity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Takwa S. Aroankins ◽  
Sathish K. Murali ◽  
Robert A. Fenton ◽  
Qi Wu

Protein post-translational modification by the Small Ubiquitin-like MOdifier (SUMO) on lysine residues is a reversible process highly important for transcription and protein stability. In the kidney, SUMOylation appears to be important for the cellular response to aldosterone. Therefore, in this study, we generated a SUMOylation profile of the aldosterone-sensitive kidney distal convoluted tubule (DCT) as a basis for understanding SUMOylation events in this cell type. Using mass spectrometry-based proteomics, 1037 SUMO1 and 552 SUMO2 sites, corresponding to 546 SUMO1 and 356 SUMO2 proteins, were identified from a modified mouse kidney DCT cell line (mpkDCT). SUMOylation of the renal hydrogen-coupled oligopeptide and drug co-transporter (Pept2) at one site (K139) was found to be highly regulated by aldosterone. Using immunolabelling of mouse kidney sections Pept2 was localized to DCT cells in vivo. Aldosterone stimulation of mpkDCT cell lines expressing wild-type Pept2 or mutant K139R-Pept2, post-transcriptionally increased Pept2 expression up to four-fold. Aldosterone decreased wild-type Pept2 abundance in the apical membrane domain of mpkDCT cells, but this response was absent in K139R-Pept2 expressing cells. In summary, we have generated a SUMOylation landscape of the mouse DCT and determined that SUMOylation plays an important role in the physiological regulation of Pept2 trafficking by aldosterone.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Angelica Aguilera-Gomez ◽  
Marinke M van Oorschot ◽  
Tineke Veenendaal ◽  
Catherine Rabouille

PARP catalysed ADP-ribosylation is a post-translational modification involved in several physiological and pathological processes, including cellular stress. In order to visualise both Poly-, and Mono-, ADP-ribosylation in vivo, we engineered specific fluorescent probes. Using them, we show that amino-acid starvation triggers an unprecedented display of mono-ADP-ribosylation that governs the formation of Sec body, a recently identified stress assembly that forms in Drosophila cells. We show that dPARP16 catalytic activity is necessary and sufficient for both amino-acid starvation induced mono-ADP-ribosylation and subsequent Sec body formation and cell survival. Importantly, dPARP16 catalyses the modification of Sec16, a key Sec body component, and we show that it is a critical event for the formation of this stress assembly. Taken together our findings establish a novel example for the role of mono-ADP-ribosylation in the formation of stress assemblies, and link this modification to a metabolic stress.


1993 ◽  
Vol 13 (1) ◽  
pp. 487-495 ◽  
Author(s):  
L B Andersen ◽  
R Ballester ◽  
D A Marchuk ◽  
E Chang ◽  
D H Gutmann ◽  
...  

Sequence analysis has shown significant homology between the catalytic regions of the mammalian ras GTPase-activating protein (GAP), yeast Ira1p and Ira2p (inhibitory regulators of the RAS-cyclic AMP pathway), and neurofibromin, the protein encoded by the NF1 gene. Yeast expression experiments have confirmed that a 381-amino-acid segment of neurofibromin, dubbed the GAP-related domain (GRD), can function as a GAP. Using the RNA polymerase chain reaction with primers flanking the NF1-GRD, we have identified evidence for alternative splicing in this region of the NF1 gene. In addition to the already published sequence (type I), an alternative RNA carrying a 63-nucleotide insertion (type II) is present in all tissues examined, although the relative amounts of types I and II vary. The insertion is conserved across species but is not present in GAP, IRA1, or IRA2. GenBank searches have failed to identify significant similarity between the inserted sequence and known DNA or protein sequences, although the basic amino acid composition of the insertion shares features with nuclear targeting sequences. Expression studies in yeasts show that despite the partial disruption of the neurofibromin-IRA-GAP homology by this insertion, both forms of the NF1-GRD can complement loss of IRA function. In vivo assays designed to compare the GAP activity of the two alternatively spliced forms of the NF1-GRD show that both can increase the conversion of GTP-bound ras to its GDP-bound form, although the insertion of the 21 amino acids weakens this effect. The strong conservation of this alternative splicing suggests that both type I and II isoforms mediate important biological functions of neurofibromin.


2009 ◽  
Vol 187 (3) ◽  
pp. 327-334 ◽  
Author(s):  
Anaïs Bouissou ◽  
Christel Vérollet ◽  
Aureliana Sousa ◽  
Paula Sampaio ◽  
Michel Wright ◽  
...  

γ-Tubulin is critical for the initiation and regulation of microtubule (MT) assembly. In Drosophila melanogaster, it acts within two main complexes: the γ-tubulin small complex (γ-TuSC) and the γ-tubulin ring complex (γ-TuRC). Proteins specific of the γ-TuRC, although nonessential for viability, are required for efficient mitotic progression. Until now, their role during interphase remained poorly understood. Using RNA interference in Drosophila S2 cells, we show that the γ-TuRC is not critical for overall MT organization. However, depletion of any component of this complex results in an increase of MT dynamics. Combined immunofluorescence and live imaging analysis allows us to reveal that the γ-TuRC localizes along interphase MTs and that distal γ-tubulin spots match with sites of pause or rescue events. We propose that, in addition to its role in nucleation, the γ-TuRC associated to MTs may regulate their dynamics by limiting catastrophes.


2007 ◽  
Vol 282 (38) ◽  
pp. 27802-27809 ◽  
Author(s):  
Sascha Rexroth ◽  
Catherine C. L. Wong ◽  
Jessica H. Park ◽  
John R. Yates ◽  
Bridgette A. Barry

Photosystem II (PSII) catalyzes the oxidation of water during oxygenic photosynthesis. PSII is composed both of intrinsic subunits, such as D1, D2, and CP47, and extrinsic subunits, such as the manganese-stabilizing subunit (MSP). Previous work has shown that amines covalently bind to amino acid residues in the CP47, D1, and D2 subunits of plant and cyanobacterial PSII, and that these covalent reactions are prevented by the addition of chloride in plant preparations depleted of the 18- and 24-kDa extrinsic subunits. It has been proposed that these reactive groups are carbonyl-containing, post-translationally modified amino acid side chains (Ouellette, A. J. A., Anderson, L. B., and Barry, B. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 2204–2209 and Anderson, L. B., Ouellette, A. J. A., and Barry, B. A. (2000) J. Biol. Chem. 275, 4920–4927). To identify the amino acid binding site in the spinach D2 subunit, we have employed a biotin-amine labeling reagent, which can be used in conjunction with avidin affinity chromatography to purify biotinylated peptides from the PSII complex. Multidimensional chromato-graphic separation and multistage mass spectrometry localizes a novel post-translational modification in the D2 subunit to glutamate 303. We propose that this glutamate is activated for amine reaction by post-translational modification. Because the modified glutamate is located at a contact site between the D2 and manganese-stabilizing subunits, we suggest that the modification is important in vivo in stabilizing the interaction between these two PSII subunits. Consistent with this conclusion, mutations at the modified glutamate alter the steady-state rate of photosynthetic oxygen evolution.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 560
Author(s):  
Sheraz Naseer ◽  
Rao Faizan Ali ◽  
Amgad Muneer ◽  
Suliman Mohamed Fati

Amidation is an important post translational modification where a peptide ends with an amide group (–NH2) rather than carboxyl group (–COOH). These amidated peptides are less sensitive to proteolytic degradation with extended half-life in the bloodstream. Amides are used in different industries like pharmaceuticals, natural products, and biologically active compounds. The in-vivo, ex-vivo, and in-vitro identification of amidation sites is a costly and time-consuming but important task to study the physiochemical properties of amidated peptides. A less costly and efficient alternative is to supplement wet lab experiments with accurate computational models. Hence, an urgent need exists for efficient and accurate computational models to easily identify amidated sites in peptides. In this study, we present a new predictor, based on deep neural networks (DNN) and Pseudo Amino Acid Compositions (PseAAC), to learn efficient, task-specific, and effective representations for valine amidation site identification. Well-known DNN architectures are used in this contribution to learn peptide sequence representations and classify peptide chains. Of all the different DNN based predictors developed in this study, Convolutional neural network-based model showed the best performance surpassing all other DNN based models and reported literature contributions. The proposed model will supplement in-vivo methods and help scientists to determine valine amidation very efficiently and accurately, which in turn will enhance understanding of the valine amidation in different biological processes.


Sign in / Sign up

Export Citation Format

Share Document