Binding of UNC-18 to the N-terminus of syntaxin is essential for neurotransmission in Caenorhabditis elegans

2009 ◽  
Vol 418 (1) ◽  
pp. 73-80 ◽  
Author(s):  
James R. Johnson ◽  
Pawel Ferdek ◽  
Lu-Yun Lian ◽  
Jeff W. Barclay ◽  
Robert D. Burgoyne ◽  
...  

SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) are widely accepted to drive all intracellular membrane fusion events. SM (Sec1/Munc18-like) proteins bind to SNAREs and this interaction may underlie their ubiquitous requirement for efficient membrane fusion. SM proteins bind to SNAREs in at least three modes: (i) to a closed conformation of syntaxin; (ii) to the syntaxin N-terminus; and (iii) to the assembled SNARE complex. Munc18-1 exhibits all three binding modes and recent in vitro reconstitution assays suggest that its interaction with the syntaxin N-terminus is essential for neuronal SNARE complex binding and efficient membrane fusion. To investigate the physiological relevance of these binding modes, we studied the UNC-18/UNC-64 SM/SNARE pair, which is essential for neuronal exocytosis in Caenorhabditis elegans. Mutations in the N-terminus of UNC-64 strongly inhibited binding to UNC-18, as did mutations targeting closed conformation binding. Complementary mutations in UNC-18 designed to selectively impair binding to either closed syntaxin or its N-terminus produced a similarly strong inhibition of UNC-64 binding. Therefore high-affinity UNC18/UNC-64 interaction in vitro involves both binding modes. To determine the physiological relevance of each mode, unc-18-null mutant worms were transformed with wild-type or mutant unc-18 constructs. The UNC-18(R39C) construct, that is defective in closed syntaxin binding, fully rescued the locomotion defects of the unc-18 mutant. In contrast, the UNC-18(F113R) construct, that is defective in binding to the N-terminus of UNC-64, provided no rescue. These results suggest that binding of UNC-18 to closed syntaxin is dispensable for membrane fusion, whereas interaction with the syntaxin N-terminus is essential for neuronal exocytosis in vivo.

2005 ◽  
Vol 16 (9) ◽  
pp. 3951-3962 ◽  
Author(s):  
Yujie Li ◽  
Dieter Gallwitz ◽  
Renwang Peng

Sec1p/Munc18 (SM) proteins are essential for membrane fusion events in eukaryotic cells. Here we describe a systematic, structure-based mutational analysis of the yeast SM protein Sly1p, which was previously shown to function in anterograde endoplasmic reticulum (ER)-to-Golgi and intra-Golgi protein transport. Five new temperature-sensitive (ts) mutants, each carrying a single amino acid substitution in Sly1p, were identified. Unexpectedly, not all of the ts mutants exhibited striking anterograde ER-to-Golgi transport defects. For example, in cells of the novel sly1-5 mutant, transport of newly synthesized lysosomal and secreted proteins was still efficient, but the ER-resident Kar2p/BiP was missorted to the outside of the cell, and two proteins, Sed5p and Rer1p, which normally shuttle between the Golgi and the ER, failed to relocate to the ER. We also discovered that in vivo, Sly1p was associated with a SNARE complex formed on the ER, and that in vitro, the SM protein directly interacted with the ER-localized nonsyntaxin SNAREs Use1p/Slt1p and Sec20p. Furthermore, several conditional mutants defective in Golgi-to-ER transport were synthetically lethal with sly1-5. Together, these results indicate a previously unrecognized function of Sly1p in retrograde transport to the endoplasmic reticulum.


2010 ◽  
Vol 21 (8) ◽  
pp. 1362-1374 ◽  
Author(s):  
Marion Weber ◽  
Konstantin Chernov ◽  
Hilkka Turakainen ◽  
Gerd Wohlfahrt ◽  
Maria Pajunen ◽  
...  

Sec1p/Munc18 (SM) family proteins regulate SNARE complex function in membrane fusion through their interactions with syntaxins. In addition to syntaxins, only a few SM protein interacting proteins are known and typically, their binding modes with SM proteins are poorly characterized. We previously identified Mso1p as a Sec1p-binding protein and showed that it is involved in membrane fusion regulation. Here we demonstrate that Mso1p and Sec1p interact at sites of exocytosis and that the Mso1p–Sec1p interaction site depends on a functional Rab GTPase Sec4p and its GEF Sec2p. Random and targeted mutagenesis of Sec1p, followed by analysis of protein interactions, indicates that Mso1p interacts with Sec1p domain 1 and that this interaction is important for membrane fusion. In many SM family proteins, domain 1 binds to a N-terminal peptide of a syntaxin family protein. The Sec1p-interacting syntaxins Sso1p and Sso2p lack the N-terminal peptide. We show that the putative N-peptide binding area in Sec1p domain 1 is important for Mso1p binding, and that Mso1p can interact with Sso1p and Sso2p. Our results suggest that Mso1p mimics N-peptide binding to facilitate membrane fusion.


2005 ◽  
Vol 4 (12) ◽  
pp. 2017-2028 ◽  
Author(s):  
Jeffrey S. Van Komen ◽  
Xiaoyang Bai ◽  
Travis L. Rodkey ◽  
Johanna Schaub ◽  
James A. McNew

ABSTRACT Exocytosis in Saccharomyces cerevisiae requires the specific interaction between the plasma membrane t-SNARE complex (Sso1/2p;Sec9p)and a vesicular v-SNARE (Snc1/2p). While SNARE proteins drive membrane fusion, many aspects of SNARE assembly and regulation are ill defined. Plasma membrane syntaxin homologs (including Sso1p) contain a highly charged juxtamembrane region between the transmembrane helix and the“ SNARE domain” or core complex domain. We examined this region in vitro and in vivo by targeted sequence modification, including insertions and replacements. These modified Sso1 proteins were expressed as the sole copy of Sso in S. cerevisiae and examined for viability. We found that mutant Sso1 proteins with insertions or duplications show limited function, whereas replacement of as few as three amino acids preceding the transmembrane domain resulted in a nonfunctional SNARE in vivo. Viability is also maintained when two proline residues are inserted in the juxtamembrane of Sso1p, suggesting that helical continuity between the transmembrane domain and the core coiled-coil domain is not absolutely required. Analysis of these mutations in vitro utilizing a reconstituted fusion assay illustrates that the mutant Sso1 proteins are only moderately impaired in fusion. These results suggest that the sequence of the juxtamembrane region of Sso1p is vital for function in vivo, independent of the ability of these proteins to direct membrane fusion.


2020 ◽  
Author(s):  
M. Duan ◽  
G. Gao ◽  
D.K. Banfield ◽  
A.J. Merz

SUMMARYSNARE chaperones of the Sec1/mammalian Unc-18 (SM) family have critical roles in SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants, and a new in vitro assay of fusion, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) preferential nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and we present evidence that close-range tethering is particularly important for trans-complex assembly when cis-SNARE assembly is a competing process. In addition, the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: the Habc domain is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. Remarkably, “split Sed5,” with the Habc domain present only as a soluble fragment, is functional both in vitro and in vivo.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Braden T Lobingier ◽  
Daniel P Nickerson ◽  
Sheng-Ying Lo ◽  
Alexey J Merz

Secretory and endolysosomal fusion events are driven by SNAREs and cofactors, including Sec17/α-SNAP, Sec18/NSF, and Sec1/Munc18 (SM) proteins. SMs are essential for fusion in vivo, but the basis of this requirement is enigmatic. We now report that, in addition to their established roles as fusion accelerators, SM proteins Sly1 and Vps33 directly shield SNARE complexes from Sec17- and Sec18-mediated disassembly. In vivo, wild-type Sly1 and Vps33 function are required to withstand overproduction of Sec17. In vitro, Sly1 and Vps33 impede SNARE complex disassembly by Sec18 and ATP. Unexpectedly, Sec17 directly promotes selective loading of Sly1 and Vps33 onto cognate SNARE complexes. A large thermodynamic barrier limits SM binding, implying that significant conformational rearrangements are involved. In a working model, Sec17 and SMs accelerate fusion mediated by cognate SNARE complexes and protect them from NSF-mediated disassembly, while mis-assembled or non-cognate SNARE complexes are eliminated through kinetic proofreading by Sec18.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Yongli Zhang ◽  
Frederick M. Hughson

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE–SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2017 ◽  
Author(s):  
Matthew L. Schwartz ◽  
Daniel P. Nickerson ◽  
Braden T. Lobingier ◽  
Cortney G. Angers ◽  
Michael Zick ◽  
...  

AbstractZippering of SNARE complexes spanning docked membranes is essential for most intracellular fusion events. Here we explore how SNARE regulators operate on discrete zippering states. The formation of a metastable trans-complex, catalyzed by HOPS and its SM subunit Vps33, is followed by subsequent zippering transitions that increase the probability of fusion. Operating independently of Sec18 catalysis, Sec17 either inhibits or stimulates SNARE-mediated fusion. If HOPS or Vps33 are absent, Sec17 inhibits fusion at an early stage. Thus, HOPS and Vps33 accelerate SNARE zippering, particularly in the presence of otherwise inhibitory Sec17. Once SNAREs are partially-zipped, Sec17 promotes fusion in either the presence or absence of HOPS — but with faster kinetics when HOPS is absent. Our data further indicate that Sec17 promotes fusion both through its direct penetration of the membrane and by enhancing C-terminal SNARE zippering. In a working model, the interplay among Sec17, Sec18, SMs, and SNARE zippering can explain why SM proteins are indispensable for SNARE-mediated fusion in vivo.Impact statementSec17 is shown to have divergent effects on pre-fusion SNARE complex activity, depending on the state of SNARE zippering. HOPS, an SM-tether complex, controls the outcome of Sec17-SNARE engagement. The results suggest a coherent working model for SM activity in vivo.


2001 ◽  
Vol 12 (11) ◽  
pp. 3375-3385 ◽  
Author(s):  
Rico Laage ◽  
Christian Ungermann

Homotypic fusion of yeast vacuoles requires a regulated sequence of events. During priming, Sec18p disassembles cis-SNARE complexes. The HOPS complex, which is initially associated with thecis-SNARE complex, then mediates tethering. Finally, SNAREs assemble into trans-complexes before the membranes fuse. The t-SNARE of the vacuole, Vam3p, plays a central role in the coordination of these processes. We deleted the N-terminal region of Vam3p to analyze the role of this domain in membrane fusion. The truncated protein (Vam3ΔN) is sorted normally to the vacuole and is functional, because the vacuolar morphology is unaltered in this strain. However, in vitro vacuole fusion is strongly reduced due to the following reasons: Assembly, as well as disassembly of thecis-SNARE complex is more efficient on Vam3ΔN vacuoles; however, the HOPS complex is not associated well with the Vam3ΔN cis-complex. Thus, primed SNAREs from Vam3ΔN vacuoles cannot participate efficiently in the reaction becausetrans-SNARE pairing is substantially reduced. We conclude that the N-terminus of Vam3p is required for coordination of priming and docking during homotypic vacuole fusion.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


Sign in / Sign up

Export Citation Format

Share Document