The interaction of the second Kunitz-type domain (KD2) of TFPI-2 with a novel interaction partner, prosaposin, mediates the inhibition of the invasion and migration of human fibrosarcoma cells

2011 ◽  
Vol 441 (2) ◽  
pp. 665-674 ◽  
Author(s):  
Chundi Xu ◽  
Fenge Deng ◽  
Zuohua Mao ◽  
Jing Zhang ◽  
Huijun Wang ◽  
...  

TFPI-2 (tissue factor pathway inhibitor-2) has recently been recognized as a new tumour suppressor gene. Low expression of this protein in several types of cancers allows for enhanced tumour growth, invasion and metastasis. To investigate the molecular mechanism responsible for the tumour-suppressor effects of TFPI-2, we performed yeast two-hybrid analysis and identified PSAP (prosaposin) as a TFPI-2-interacting partner. This interaction was confirmed by co-immunoprecipitation and immunofluorescence. The region of TFPI-2 that interacts with PSAP is located in the KD2 (Kunitz-type domain 2). Further study showed that PSAP does not affect the function of TFPI-2 as a serine proteinase inhibitor, but that TFPI-2 could inhibit the invasion-promoting effects of PSAP in human HT1080 fibrosarcoma cells. The results of the present study revealed that TFPI-2 interacts with PSAP, which may play an important role in the physiology and pathology of diseases such as cancer.

The Lancet ◽  
2005 ◽  
Vol 365 (9464) ◽  
pp. 1026-1027
Author(s):  
A BITTON ◽  
M NEUMAN ◽  
J BARNOYA ◽  
S GLANTZ

2021 ◽  
Author(s):  
Jessica A. Pilsworth ◽  
Anne‐Laure Todeschini ◽  
Samantha J. Neilson ◽  
Dawn R. Cochrane ◽  
Daniel Lai ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1237
Author(s):  
Linda K. H. Teng ◽  
Brooke A. Pereira ◽  
Shivakumar Keerthikumar ◽  
Cheng Huang ◽  
Birunthi Niranjan ◽  
...  

Mast cells (MCs) are important cellular components of the tumor microenvironment and are significantly associated with poor patient outcomes in prostate cancer and other solid cancers. The promotion of tumor progression partly involves heterotypic interactions between MCs and cancer-associated fibroblasts (CAFs), which combine to potentiate a pro-tumor extracellular matrix and promote epithelial cell invasion and migration. Thus far, the interactions between MCs and CAFs remain poorly understood. To identify molecular changes that may alter resident MC function in the prostate tumor microenvironment, we profiled the transcriptome of human prostate MCs isolated from patient-matched non-tumor and tumor-associated regions of fresh radical prostatectomy tissue. Transcriptomic profiling revealed a distinct gene expression profile of MCs isolated from prostate tumor regions, including the downregulation of SAMD14, a putative tumor suppressor gene. Proteomic profiling revealed that overexpression of SAMD14 in HMC-1 altered the secretion of proteins associated with immune regulation and extracellular matrix processes. To assess MC biological function within a model of the prostate tumor microenvironment, HMC-1-SAMD14+ conditioned media was added to co-cultures of primary prostatic CAFs and prostate epithelium. HMC-1-SAMD14+ secretions were shown to reduce the deposition and alignment of matrix produced by CAFs and suppress pro-tumorigenic prostate epithelial morphology. Overall, our data present the first profile of human MCs derived from prostate cancer patient specimens and identifies MC-derived SAMD14 as an important mediator of MC phenotype and function within the prostate tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document