scholarly journals The effect of goat milk fractions on synthesis of milk constituents by rabbit mammary explants and on milk yield in vivo. Evidence for autocrine control of milk secretion

1987 ◽  
Vol 242 (1) ◽  
pp. 285-288 ◽  
Author(s):  
C J Wilde ◽  
D T Calvert ◽  
A Daly ◽  
M Peaker

Lactose and casein synthesis by rabbit mammary explants in organ culture was inhibited when fractions of goat milk were included in the culture medium. Inhibition was dose-dependent, and readily reversed when milk fractions were removed. The pattern of effects obtained with various fractions of milk indicated that inhibition was caused by a protein of 10,000-30,000 Da, which was present in the milk serum or whey fraction. The inhibitor fraction decreased milk accumulation when injected into lactating rabbit mammary glands via the teat ducts, whereas other milk proteins had no effect. Results are discussed in terms of autocrine regulation of milk synthesis through negative feedback by milk constituents.

2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


2021 ◽  
Author(s):  
◽  
Marcus James Robinson

<p>Food allergy, defined as an adverse immune response to food, is increasing in prevalence. It can be broadly separated into phases of sensitization, in which allergy-triggering Immunoglobulin E (IgE) is generated, and the post-sensitization allergic response, in which the allergic response is triggered by sensitizing allergen. While much is known about the specific mediators that cause allergies, the immune processes that underlie disease progression are less clear. This project has employed mouse models of Th2 immunity to clarify the factors involved in the initiation and maintenance of allergic disease.  At the centre of allergic disease is the Interleukin (IL)-4-producing CD4+ T helper type 2 (Th2) cell. One of the key inducers of Th2 cell development in vitro is IL-4, but its involvement in Th2 cell development in vivo is controversial. In our studies, we saw that Th2 cell development could be initiated in vivo by primary, adjuvant-free allergen immunisation in the absence of IL-4. However, Th2 cells were more frequent in IL-4-sufficient conditions. We also determined that genetic lesions that result in loss of one, or both, IL-4 alleles impaired the Th2 cell-mediated allergic process, such that IL-4-heterozygous mice can be considered haplo-insufficient for IL-4 in allergic disease contexts.  In addition to the generation of IgE antibody, Th2 cells are implicated in the post-sensitization phase of allergy. Multiple oral challenges of sensitized mice induces elevations in Th2-associated cytokines and elevates intestinal mast cell frequencies. It was the second aim of this project to clarify the role of CD4+ T cells in the post-sensitization intestinal allergic process. We demonstrate a key role for CD4+ T cells in this jejunal mast cell recruitment, and identify that this is required in addition to their established contribution to IgE production. Our investigations also reveal a previously unappreciated role for the CD4+ T cell-derived cytokine IL-3 in oral food allergy. These findings suggest that intestinally localised mast cell-inducer Th2 (Th2m) cells are required for allergic responses generated in the intestine. We also investigated whether specific components of ruminant milks influence the allergic process. While goat and cow milks share significant protein homology, goat milk has lower sensitizing and response-evoking capacity, or allergenicity, than cow milk, in numerous experimental systems. In this project, we compared dominant allergens purified from cow and goat milks for their ability to initiate Th2 cell development. We also examined the ability of one of these allergens to initiate the intestinal allergic process. In these studies, we observed similar Th2 cell development and intestinal mast cell activity in response to both cow and goat milk proteins. These responses indicate that the intrinsic allergenicity of the proteins analysed is not sufficient to explain the differential allergenicity attributed to cow and goat milk.  These studies examine the endogenous and exogenous factors that contribute to the development of allergic disease. This project clarifies the role of IL-4 in in vivo Th2 cell development, identifies functional segregation of CD4+ Th2 cells in the intestinal allergic process and further illustrates some of the similarities in the allergenicity of isolated cow and goat milk proteins. Collectively, these studies uncover fundamental aspects of the allergic process which may be useful targets for disease intervention in both prophylactic and therapeutic settings.</p>


1974 ◽  
Vol 62 (2) ◽  
pp. 225-240 ◽  
Author(s):  
D. LEWIS ◽  
R. C. HALLOWES

SUMMARY Explants from 32 mammary tumours induced in Sprague—Dawley rats by 9,10-dimethyl-1,2-benzanthracene (DMBA) were maintained in organ culture for up to 48 h. Insulin, corticosterone, prolactin, growth hormone and oestradiol were added to the culture medium in various combinations and their effects on the DNA synthesis of the explants was studied. DNA synthesis was stimulated by insulin in explants from 30 out of the 32 tumours examined and this group of 30 responsive tumours could be further subdivided. Explants from 16 tumours showed a greater rate of DNA synthesis in medium containing insulin plus corticosterone plus prolactin than in medium containing insulin alone and this higher rate was decreased by oestradiol; this group is referred to as 'prolactin-responsive'. Explants from the remaining 14 tumours did not show a greater rate of DNA synthesis in medium that contained insulin plus corticosterone plus prolactin than in medium containing insulin alone and neither rate was decreased by oestradiol; this group is referred to as 'insulin-responsive'. Explants from two tumours were not stimulated by insulin and these tumours are referred to as 'non-responsive'. After oophorectomy or administration of ergocryptine to tumour-bearing rats, the prolactin-responsive tumours regressed whereas the non-responsive tumours continued to grow. Explants taken from prolactin-responsive tumours 2 weeks after either oophorectomy or administration of ergocryptine were still prolactin-responsive but those taken from insulin-responsive tumours 2 weeks after the same treatment were now also prolactin-responsive. The non-responsive tumours remained non-responsive. The effects of hormones on the DNA synthesis in vitro of explants from growing DMBA-induced tumours were thus different from those on explants of mammary glands from virgin or pregnant Sprague—Dawley rats. It was concluded that it was possible to predict by organ culture techniques the response in vivo of growing mammary tumours to oophorectomy and ergocryptine administration.


Parasitology ◽  
2014 ◽  
Vol 141 (6) ◽  
pp. 761-769 ◽  
Author(s):  
CAMILA BELMONTE OLIVEIRA ◽  
LUCAS ALMEIDA RIGO ◽  
LUCIANA DALLA ROSA ◽  
LUCAS TREVISAN GRESSLER ◽  
CARINE ELOISE PRESTES ZIMMERMANN ◽  
...  

SUMMARYThis study aimed to develop and test the in vitro and in vivo effectiveness of diminazene aceturate encapsulated into liposomes (L-DMZ) on Trypanosoma evansi. To validate the in vitro tests with L-DMZ, the efficacy of a commercial formulation of diminazene aceturate (C-DMZ) was also assessed. The tests were carried out in culture medium for T. evansi, at concentrations of 0·25, 0·5, 1, 2 and 3 μg mL−1 of L-DMZ and C-DMZ. A dose-dependent effect was observed for both formulations (L-DMZ and C-DMZ), with the highest dose-dependent mortality of trypomastigotes being observed at 1 and 3 h after the onset of tests with L-DMZ. The results of in vivo tests showed the same effects in the animals treated with L-DMZ and C-DMZ in single doses of 3·5 mg kg−1 and for 5 consecutive days (3·5 mg kg−1 day−1). It was possible to conclude that T. evansi showed greater in vitro susceptibility to L-DMZ when compared with C-DMZ. In vivo tests suggest that treatment with the L-DMZ and C-DMZ showed similar efficacy in vivo. The potential of the formulation developed in this study was clearly demonstrated, as it increased the efficacy of the treatment against trypanosomosis, but more studies are needed to increase the effectiveness in vivo.


2005 ◽  
Vol 288 (6) ◽  
pp. R1598-R1605 ◽  
Author(s):  
Philip A. Veillette ◽  
Graham Young

A method to culture tissue explants of the intestine from freshwater-adapted sockeye salmon ( Oncorhynchus nerka) was developed to assess possible direct effects of cortisol on Na+-K+-ATPase activity. As judged by several criteria, explants from pyloric ceca and the posterior region of the intestine remained viable during short-term (6-day) culture, although Na+-K+-ATPase activity declined and basolateral components of the enterocytes were observed to be partially degraded. Addition of cortisol to the culture medium maintained Na+-K+-ATPase activity (over 2–12 days) above that of control explants and, in some cases, was similar to levels before culture. The response to cortisol was dose dependent (0.001–10 μg/ml). Within the physiological range, the response was specific for cortisol and showed the following hierarchy: dexamethasone ≥ cortisol > 11-deoxycortisol > cortisone. Insulin maintained Na+-K+-ATPase activity over controls in explants of ceca but not posterior intestine. To compare in vivo and in vitro responses, slow-release implants of cortisol (50 μg/g) were administered to salmon for 7 days. This treatment elevated plasma cortisol levels and stimulated Na+-K+-ATPase activity in both intestinal regions. The results demonstrate that the teleost intestine is a direct target of cortisol, this corticosteroid protects in vitro functionality of Na+-K+-ATPase, and explants retain cortisol responsiveness during short-term culture.


2012 ◽  
Vol 80 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Gilles Robitaille

Caseinomacropeptide (CMP), a 7-kDa phosphoglycopolypeptide fragment released from κ-casein during milk renneting, is heterogeneous with respect to post-translational glycosylation. Several studies have reported that CMP has growth-promoting activity on lactic acid bacteria belonging to the genera Bifidobacterium. The aim of this study was to evaluate the effect of glycosylation and sequence variations between bovine and caprine CMP on the growth of two probiotics: Lactobacillus rhamnosus RW-9595-M and Bifidobacterium thermophilum RBL67. The growth-promoting activities of CMP (mixture of glycosylated (gCMP) and non-glycosylated (aCMP) fractions), aCMP and gCMP were measured in a basal minimal culture medium using turbidimetric microplate assay at 37 °C. Supplementation of the culture media at 2 mg/ml significantly improved maximum growth by 1·5 to 1·8 times depending on the strain, the additive (CMP, aCMP, gCMP), and the bovine or caprine origin (P < 0·05). CMP preparations also decreased the time needed to reach the inflexion point of the growth curve and increase the cell density at that time (P < 0·05). The effects of CMP preparations were dose dependent and significantly superior to the effect of bovine β-lactoglobulin added to the culture media. As gCMP and aCMP were as efficient as bovine and caprine CMP (P > 0·1), it was concluded that the presence of oligosaccharides linked to CMP was not essential for growth-promoting activity of CMP.


2021 ◽  
Author(s):  
◽  
Marcus James Robinson

<p>Food allergy, defined as an adverse immune response to food, is increasing in prevalence. It can be broadly separated into phases of sensitization, in which allergy-triggering Immunoglobulin E (IgE) is generated, and the post-sensitization allergic response, in which the allergic response is triggered by sensitizing allergen. While much is known about the specific mediators that cause allergies, the immune processes that underlie disease progression are less clear. This project has employed mouse models of Th2 immunity to clarify the factors involved in the initiation and maintenance of allergic disease.  At the centre of allergic disease is the Interleukin (IL)-4-producing CD4+ T helper type 2 (Th2) cell. One of the key inducers of Th2 cell development in vitro is IL-4, but its involvement in Th2 cell development in vivo is controversial. In our studies, we saw that Th2 cell development could be initiated in vivo by primary, adjuvant-free allergen immunisation in the absence of IL-4. However, Th2 cells were more frequent in IL-4-sufficient conditions. We also determined that genetic lesions that result in loss of one, or both, IL-4 alleles impaired the Th2 cell-mediated allergic process, such that IL-4-heterozygous mice can be considered haplo-insufficient for IL-4 in allergic disease contexts.  In addition to the generation of IgE antibody, Th2 cells are implicated in the post-sensitization phase of allergy. Multiple oral challenges of sensitized mice induces elevations in Th2-associated cytokines and elevates intestinal mast cell frequencies. It was the second aim of this project to clarify the role of CD4+ T cells in the post-sensitization intestinal allergic process. We demonstrate a key role for CD4+ T cells in this jejunal mast cell recruitment, and identify that this is required in addition to their established contribution to IgE production. Our investigations also reveal a previously unappreciated role for the CD4+ T cell-derived cytokine IL-3 in oral food allergy. These findings suggest that intestinally localised mast cell-inducer Th2 (Th2m) cells are required for allergic responses generated in the intestine. We also investigated whether specific components of ruminant milks influence the allergic process. While goat and cow milks share significant protein homology, goat milk has lower sensitizing and response-evoking capacity, or allergenicity, than cow milk, in numerous experimental systems. In this project, we compared dominant allergens purified from cow and goat milks for their ability to initiate Th2 cell development. We also examined the ability of one of these allergens to initiate the intestinal allergic process. In these studies, we observed similar Th2 cell development and intestinal mast cell activity in response to both cow and goat milk proteins. These responses indicate that the intrinsic allergenicity of the proteins analysed is not sufficient to explain the differential allergenicity attributed to cow and goat milk.  These studies examine the endogenous and exogenous factors that contribute to the development of allergic disease. This project clarifies the role of IL-4 in in vivo Th2 cell development, identifies functional segregation of CD4+ Th2 cells in the intestinal allergic process and further illustrates some of the similarities in the allergenicity of isolated cow and goat milk proteins. Collectively, these studies uncover fundamental aspects of the allergic process which may be useful targets for disease intervention in both prophylactic and therapeutic settings.</p>


Author(s):  
Awtar Krishan ◽  
Dora Hsu

Cells exposed to antitumor plant alkaloids, vinblastine and vincristine sulfate have large proteinacious crystals and complexes of ribosomes, helical polyribosomes and electron-dense granular material (ribosomal complexes) in their cytoplasm, Binding of H3-colchicine by the in vivo crystals shows that they contain microtubular proteins. Association of ribosomal complexes with the crystals suggests that these structures may be interrelated.In the present study cultured human leukemic lymphoblasts (CCRF-CEM), were incubated with protein and RNA-synthesis inhibitors, p. fluorophenylalanine, puromycin, cycloheximide or actinomycin-D before the addition of crystal-inducing doses of vinblastine to the culture medium. None of these compounds could completely prevent the formation of the ribosomal complexes or the crystals. However, in cells pre-incubated with puromycin, cycloheximide, or actinomycin-D, a reduction in the number and size of the ribosomal complexes was seen. Large helical polyribosomes were absent in the ribosomal complexes of cells treated with puromycin, while in cells exposed to cycloheximide, there was an apparent reduction in the number of ribosomes associated with the ribosomal complexes (Fig. 2).


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


1989 ◽  
Vol 61 (03) ◽  
pp. 463-467 ◽  
Author(s):  
G M Smith

SummaryIn this study, 5-hydroxytryptamine (5-HT) caused a dose- dependent fall in the circulating platelet count suggesting that 5-HT receptors are activated in rat platelets to cause platelet adhesion and aggregation. When low doses of adenosine diphosphate (ADP) were simultaneously injected with 5-HT, there was a significant potentiation of the responses to ADR Ketanserin significantly reduced the potentiated responses. When higher doses of ADP were infused with bolus injections of 5-HT there was no potentiation and ketanserin did not reduce these responses. Ketanserin did not inhibit the collagen-induced fall in circulating platelet count, but did significantly increase the rate of return to the basal platelet count compared with control. 5-HT did not cause a fall in platelet count in guinea-pigs


Sign in / Sign up

Export Citation Format

Share Document