Growth-promoting effects of caseinomacropeptide from cow and goat milk on probiotics

2012 ◽  
Vol 80 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Gilles Robitaille

Caseinomacropeptide (CMP), a 7-kDa phosphoglycopolypeptide fragment released from κ-casein during milk renneting, is heterogeneous with respect to post-translational glycosylation. Several studies have reported that CMP has growth-promoting activity on lactic acid bacteria belonging to the genera Bifidobacterium. The aim of this study was to evaluate the effect of glycosylation and sequence variations between bovine and caprine CMP on the growth of two probiotics: Lactobacillus rhamnosus RW-9595-M and Bifidobacterium thermophilum RBL67. The growth-promoting activities of CMP (mixture of glycosylated (gCMP) and non-glycosylated (aCMP) fractions), aCMP and gCMP were measured in a basal minimal culture medium using turbidimetric microplate assay at 37 °C. Supplementation of the culture media at 2 mg/ml significantly improved maximum growth by 1·5 to 1·8 times depending on the strain, the additive (CMP, aCMP, gCMP), and the bovine or caprine origin (P < 0·05). CMP preparations also decreased the time needed to reach the inflexion point of the growth curve and increase the cell density at that time (P < 0·05). The effects of CMP preparations were dose dependent and significantly superior to the effect of bovine β-lactoglobulin added to the culture media. As gCMP and aCMP were as efficient as bovine and caprine CMP (P > 0·1), it was concluded that the presence of oligosaccharides linked to CMP was not essential for growth-promoting activity of CMP.

1987 ◽  
Vol 242 (1) ◽  
pp. 285-288 ◽  
Author(s):  
C J Wilde ◽  
D T Calvert ◽  
A Daly ◽  
M Peaker

Lactose and casein synthesis by rabbit mammary explants in organ culture was inhibited when fractions of goat milk were included in the culture medium. Inhibition was dose-dependent, and readily reversed when milk fractions were removed. The pattern of effects obtained with various fractions of milk indicated that inhibition was caused by a protein of 10,000-30,000 Da, which was present in the milk serum or whey fraction. The inhibitor fraction decreased milk accumulation when injected into lactating rabbit mammary glands via the teat ducts, whereas other milk proteins had no effect. Results are discussed in terms of autocrine regulation of milk synthesis through negative feedback by milk constituents.


2015 ◽  
Vol 42 (1) ◽  
pp. 117-122 ◽  
Author(s):  
M Begum ◽  
P Noor ◽  
KN Ahmed ◽  
N Sultana ◽  
MR Hasan ◽  
...  

Study has been conducted to establish a suitable culture technique for Tubificid worm, Tubifex tubifex using different culture media. Cowdung, Rawfish and vegetables were evaluated as culture medium. Each medium was supplied as supplementary food at the rate of 250 mg/cm2 per week for 145 days. Water temperature, pH and ammonia of the rearing media ranged from 27.1-31.670C, 5.76-7.35 and 0.5 - <2.5 mg/l respectively. Among the three media, the worms grew well in size in the cowdung medium whereas rawfish showed a moderate growth of worms with remarkable number of new generation of worms. There was no significant growth of worms in the vegetables. The collection of Tubifex was quite difficult but highest amount was in cow dung (8.192 mg/g), moderate in rawfish medium (4.14 mg/g) and lowest in the vegetables (2.43 mg/g). Cowdung medium showed the maximum growth in this study period which is more viable, easy and economical.Bangladesh J. Zool. 42(1): 117-122, 2014


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


2017 ◽  
Vol 6 (8) ◽  
pp. 5459
Author(s):  
Chandra Teja K. ◽  
Rahman S. J.

Entomopathogenic fungi like Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii are used in biological control of agricultural insect pests. Their specific mode of action makes them an effective alternative to the chemical Insecticides. Virulent strains of Entomopathogenic fungi are effectively formulated and used as bio-insecticides world-wide. Amenable and economical multiplication of a virulent strain in a large scale is important for them to be useful in the field. Culture media plays a major role in the large-scale multiplication of virulent strains of Entomopathogens. Different substrates and media components are being used for this purpose. Yet, each strain differs in its nutritional requirements for the maximum growth and hence it is necessary to standardize the right components and their optimum concentrations in the culture media for a given strain of Entomopathogen. In the current study, three different nitrogen sources and two different carbon sources were tried to standardize the mass multiplication media for seven test isolates of Entomopathogenic fungi. A study was also conducted to determine the ideal grain media for the optimum conidial yields of the test isolates. Yeast extract was found to be the best Nitrogen source for the isolates. The isolates tested, differed in their nutritional requirements and showed variation in the best nitrogen and carbon sources necessary for their growth. Variation was also found in the optimum concentration of both the ingredients for the growth and sporulation of the isolates. In the solid-state fermentation study, rice was found to be the best grain for the growth of most of the fungi followed by barley. The significance of such a study in the development of an effective Myco-insecticide is vital and can be successfully employed in agriculture is discussed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 378
Author(s):  
Van-Tuyen Le ◽  
Samuel Bertrand ◽  
Thibaut Robiou du Pont ◽  
Fabrice Fleury ◽  
Nathalie Caroff ◽  
...  

Very little is known about chemical interactions between fungi and their mollusc host within marine environments. Here, we investigated the metabolome of a Penicillium restrictum MMS417 strain isolated from the blue mussel Mytilus edulis collected on the Loire estuary, France. Following the OSMAC approach with the use of 14 culture media, the effect of salinity and of a mussel-derived medium on the metabolic expression were analysed using HPLC-UV/DAD-HRMS/MS. An untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA) and molecular networking (MN). It highlighted some compounds belonging to sterols, macrolides and pyran-2-ones, which were specifically induced in marine conditions. In particular, a high chemical diversity of pyran-2-ones was found to be related to the presence of mussel extract in the culture medium. Mass spectrometry (MS)- and UV-guided purification resulted in the isolation of five new natural fungal pyran-2-one derivatives—5,6-dihydro-6S-hydroxymethyl-4-methoxy-2H-pyran-2-one (1), (6S, 1’R, 2’S)-LL-P880β (3), 5,6-dihydro-4-methoxy-6S-(1’S, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (4), 4-methoxy-6-(1’R, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (6) and 4-methoxy-2H-pyran-2-one (7)—together with the known (6S, 1’S, 2’S)-LL-P880β (2), (1’R, 2’S)-LL-P880γ (5), 5,6-dihydro-4-methoxy-2H-pyran-2-one (8), (6S, 1’S, 2’R)-LL-P880β (9), (6S, 1’S)-pestalotin (10), 1’R-dehydropestalotin (11) and 6-pentyl-4-methoxy-2H-pyran-2-one (12) from the mussel-derived culture medium extract. The structures of 1-12 were determined by 1D- and 2D-MMR experiments as well as high-resolution tandem MS, ECD and DP4 calculations. Some of these compounds were evaluated for their cytotoxic, antibacterial, antileishmanial and in-silico PTP1B inhibitory activities. These results illustrate the utility in using host-derived media for the discovery of new natural products.


2021 ◽  
Vol 2 (2) ◽  
pp. 538-553
Author(s):  
Natacha Coelho ◽  
Alexandra Filipe ◽  
Bruno Medronho ◽  
Solange Magalhães ◽  
Carla Vitorino ◽  
...  

In vitro culture is an important biotechnological tool in plant research and an appropriate culture media is a key for a successful plant development under in vitro conditions. The use of natural compounds to improve culture media has been growing and biopolymers are interesting alternatives to synthetic compounds due to their low toxicity, biodegradability, renewability, and availability. In the present study, different culture media containing one biopolymer (chitosan, gum arabic) or a biopolymer derivative [hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC)], at 100 or 1000 mg L−1, were tested regarding their influence on the growth and physiological responses of Thymus lotocephalus in vitro culture. Cellulose-based biopolymers (HEC and CMC) and gum arabic were used for the first time in plant culture media. The results showed that CMC at 100 mg L−1 significantly improved shoot elongation while chitosan, at the highest concentration, was detrimental to T. lotocephalus. Concerning only the evaluated physiological parameters, all tested biopolymers and biopolymer derivatives are safe to plants as there was no evidence of stress-induced changes on T. lotocephalus. The rheological and microstructural features of the culture media were assessed to understand how the biopolymers and biopolymer derivatives added to the culture medium could influence shoot growth. As expected, all media presented a gel-like behaviour with minor differences in the complex viscosity at the beginning of the culture period. Most media showed increased viscosity overtime. The surface area increased with the addition of biopolymers and biopolymer derivatives to the culture media and the average pore size was considerably lower for CMC at 100 mg L−1. The smaller pores of this medium might be related to a more efficient nutrients and water uptake by T. lotocephalus shoots, leading to a significant improvement in shoot elongation. In short, this study demonstrated that the different types of biopolymers and biopolymer derivatives added to culture medium can modify their microstructure and at the right concentrations, are harmless to T. lotocephalus shoots growing in vitro, and that CMC improves shoot length.


2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


1954 ◽  
Vol 1 (2) ◽  
pp. 85-89 ◽  
Author(s):  
Edith Mankiewicz

A new growth factor for Mycobacterium tuberculosis is described. It is produced by Candida albicans and stimulates the growth of tubercle bacilli of reduced viability or multiplication rate, as this is observed after treatment of the patient by chemotherapeutic or antibiotic agents. A method for the earlier detection of M. tuberculosis growing on Loewenstein's medium is described: Loewenstein's culture media, previously inoculated with the pathological specimen suspected to contain tubercle bacilli, are superinoculated with suspensions of Candida albicans whose dependence upon the presence of tubercle bacilli to grow on this medium has been enhanced. Colonies of Candida albicans will "trace" the presence of M. tuberculosis.


2007 ◽  
Vol 81 (13) ◽  
pp. 7111-7123 ◽  
Author(s):  
Benjamin J. Chen ◽  
George P. Leser ◽  
Eiji Morita ◽  
Robert A. Lamb

ABSTRACT For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
B Aparicio Ruiz ◽  
L Bori ◽  
E Paya ◽  
M A Valera ◽  
A Quiñonero ◽  
...  

Abstract Study question Would it be possible to predict embryo ploidy by taking into account conventional morphological and morphokinetic parameters together with IL-6 concentration in spent culture medium? Summary answer Our artificial neural network (ANN) trained with blastocyst morphology, embryo morphokinetics and IL-6 concentration distinguished between euploid/aneuploid embryos in 65% of the testing dataset. What is known already The analysis of spent embryo culture media represents the protein and metabolic state of the embryo and could be a non-invasive method of obtaining information about embryo quality. The impact of the presence/absence of several proteins in embryo culture samples over clinical results has been widely studied. The IL-6 is one of the most mentioned protein for its effect on embryo development, implantation and likelihood of achieving a live birth. In this initial attempt, we examined the predictive value for euploidy of a model that took into account the concentration of IL-6 in the spent culture medium. Study design, size, duration This prospective study included 319 embryos with PGT-A results. Out of the total, 127 were euploid and 192 aneuploid embryos. Concentration of IL-6 in spent embryo culture media (collected on the day of trophectoderm biopsy-fifth/sixth day of development), morphokinetic parameters (division time to 2 cells-t2; to 3 cells-t3, to 4 cells-t4; to 5 cells-t5 and time of blastocyst formation-tB) and blastocyst morphological grade (according to ASEBIR criteria) were considered to predict the embryo ploidy. Participants/materials, setting, methods Embryos were cultured in EmbryoScope. The chromosome analysis was performed using next-generation sequence technology. The concentration of IL-6 was measured in 20µL of spent embryo culture media with ELISA kits. Morphokinetic parameters were automatically annotated and the blastocyst morphology was evaluated by senior embryologists based on blastocele expansion, inner cell mass and trophectoderm quality. All the embryos were divided into 70% for training, 15% for validating and 15% for testing our ANN model with MatLab®. Main results and the role of chance The general description for the euploid embryo population was the following: 2% of the embryos were graded as A, 71% were graded as B and 28% were graded as C; the means and standard deviations were 25.32±2.97 hours (h) for t2, 35.33±5.15h for t3, 37.30±5.43h for t4, 48.24±6.62h for t5 and 103.93±12.8h for tB; and the average of IL-6 concentration was 1.51±0.70 pg/ml. The general description for the aneuploid embryo population was the following: 1% of the embryos were graded as A, 48% were graded as B and 51% were graded as C; the means and standard deviations were 26.13±3.51h for t2, 36.70±4.29h for t3, 38.20±4.24h for t4, 49.86±6.89h for t5 and 107.10±8.29h for tB; and the average of IL-6 concentration was 1.47±0.71 pg/ml. Our ANN model showed a higher general success rate as we increased the variables considered in the final prediction of euploid embryos. The accuracy, sensitivity and specificity for the testing dataset were: 0.60, 0.12 and 0.87 with morphokinetic parameters; 0.63, 0.24 and 0.93 with morphokinetics and IL-6 concentration; and 0.65, 0.16 and 0.96 with morphokinetics, IL-6 concentration and blastocyst morphological grade. Limitations, reasons for caution The low sensitivity and high specificity achieved in our models indicated that they were more capable of detecting aneuploid than euploid embryos. As this was a preliminary study, the small number of embryos included in the test (n = 48) was also a limitation. Wider implications of the findings The results showed that our model tended to classify the embryos as aneuploid. More euploid embryos would be necessary to train our model and achieve better results in the prediction of chromosomally normal embryos. Further studies with large number of embryos and additional variables could improve the non-invasive ploidy prediction. Trial registration number not applicable


Sign in / Sign up

Export Citation Format

Share Document