scholarly journals Chemistry of the collagen cross-links. Origin and partial characterization of a putative mature cross-link of collagen

1987 ◽  
Vol 244 (2) ◽  
pp. 303-309 ◽  
Author(s):  
K Barnard ◽  
N D Light ◽  
T J Sims ◽  
A J Bailey

The conversion of the reducible divalent cross-links in collagen to non-reducible multivalent cross-links in mature collagen has resulted in the identification of several new amino acids as the putative mature cross-link. None of these compounds has completely satisfied the necessary criteria. We have now isolated an amino acid of high Mr, derived from lysine, that is only present in high-Mr peptides derived from mature collagen. Its increase with age of the tissue correlates with the decrease in the reducible cross-links, and it is present both in mature skin and bone, which are initially cross-linked through the aldimine and oxo-imine divalent cross-link respectively. We propose that this amino acid, as yet incompletely characterized and designated compound M, is a major cross-link of mature collagen.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Abstract According to the amino acid composition of natural proteins, it could be expected that all possible sequences of three or four amino acids will occur at least once in large protein datasets purely by chance. However, in some species or cellular context, specific short amino acid motifs are missing due to unknown reasons. We describe these as Avoided Motifs, short amino acid combinations missing from biological sequences. Here we identify 209 human and 154 bacterial Avoided Motifs of length four amino acids, and discuss their possible functionality according to their presence in other species. Furthermore, we determine two Avoided Motifs of length three amino acids in human proteins specifically located in the cytoplasm, and two more in secreted proteins. Our results support the hypothesis that the characterization of Avoided Motifs in particular contexts can provide us with information about functional motifs, pointing to a new approach in the use of molecular sequences for the discovery of protein function.


1984 ◽  
Vol 62 (5) ◽  
pp. 276-279 ◽  
Author(s):  
C. H. Lin ◽  
W. Chung ◽  
K. P. Strickland ◽  
A. J. Hudson

An isozyme of S-adenosylmethionine synthetase has been purified to homogeneity by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and gel filtration on a Sephadex G-200 column. The purified enzyme is very unstable and has a molecular weight of 120 000 consisting of two identical subunits. Amino acid analysis on the purified enzyme showed glycine, glutamate, and aspartate to be the most abundant and the aromatic amino acids to be the least abundant. It possesses tripolyphosphatase activity which can be stimulated five to six times by S-adenosylmethionine (20–40 μM). The findings support the conclusion that an enzyme-bound tripolyphosphate is an obligatory intermediate in the enzymatic synthesis of S-adenosylmethionine from ATP and methionine.


1997 ◽  
Vol 41 (2) ◽  
pp. 314-318 ◽  
Author(s):  
E Hannecart-Pokorni ◽  
F Depuydt ◽  
L de wit ◽  
E van Bossuyt ◽  
J Content ◽  
...  

The amikacin resistance gene aac(6')-Im [corrected] from Citrobacter freundii Cf155 encoding an aminoglycoside 6'-N-acetyltransferase was characterized. The gene was identified as a coding sequence of 521 bp located down-stream from the 5' conserved segment of an integron. The sequence of this aac(6')-Im [corrected] gene corresponded to a protein of 173 amino acids which possessed 64.2% identity in a 165-amino-acid overlap with the aac(6')-Ia gene product (F.C. Tenover, D. Filpula, K.L. Phillips, and J. J. Plorde, J. Bacteriol. 170:471-473, 1988). By using PCR, the aac(6')-Im [corrected] gene could be detected in 8 of 86 gram-negative clinical isolates from two Belgian hospitals, including isolates of Citrobacter, Klebsiella spp., and Escherichia coli. PCR mapping of the aac(6')-Im [corrected] gene environment in these isolates indicated that the gene was located within a sulI-type integron; the insert region is 1,700 bases long and includes two genes cassettes, the second being ant (3")-Ib.


1993 ◽  
Vol 115 (9) ◽  
pp. 3790-3791 ◽  
Author(s):  
Humberto Diaz ◽  
Kwok Yin Tsang ◽  
Danny Choo ◽  
Jose R. Espina ◽  
Jeffery W. Kelly

2015 ◽  
Vol 39 (5) ◽  
pp. 3319-3326 ◽  
Author(s):  
Madhusudana M. B. Reddy ◽  
K. Basuroy ◽  
S. Chandrappa ◽  
B. Dinesh ◽  
B. Vasantha ◽  
...  

γn amino acid residues can be incorporated into structures in γn and hybrid sequences containing folded and extended α and δ residues.


Development ◽  
1970 ◽  
Vol 24 (1) ◽  
pp. 109-118
Author(s):  
E. L. Triplett ◽  
R. Herzog ◽  
L. P. Russell

A population of polysomes isolated from frogskinis capable of supporting protein synthesis in a cell-free system containing an energy generating system, ‘soluble components’, and amino acids. These polysomes catalyse the oxidation of DOPA after gentle trypsinization, and they also have antigenic determinants attributable to tyrosine oxidase. Skin polysomes sedimented in 10–30 % sucrose gradients contain tyrosine oxidase peaks of enzymic activity at the bottom and top of the tube and in the 250 S regions. A peak of tyrosine oxidase antigenic acitvity is found in the 250–350S region of the gradient. Polysomes resolved on the gradient retain the ability to support protein synthesis in a cellfree system. All 250–350S particles capable of supporting the incorporation of [14C]amino acid into tyrosine oxidase are precipitable with tyrosine oxidase antibodies. It is probable that 250–350S tyrosine oxidase antibody precipitates contain only polysomes for this protein.


1990 ◽  
Vol 45 (5) ◽  
pp. 538-543 ◽  
Author(s):  
D. Friedberg ◽  
J. Seijffers

We present here the isolation and molecular characterization of acetolactate synthase (ALS) genes from the cyanobacterium Synechococcus PCC7942 which specify a sulfonylurea-sensitive enzyme and from the sulfonylurea-resistant mutant SM3/20, which specify resistance to sulfonylurea herbicides. The ALS gene was cloned and mapped by complementation of an Escherichia coli ilv auxotroph that requires branched-chain amino acids for growth and lacks ALS activity. The cyanobacterial gene is efficiently expressed in this heterologous host. The ALS gene codes for 612 amino acids and shows high sequence homology (46%) at the amino acid level with ALS III of E. coli and with the tobacco ALS. The resistant phenotype is a consequence of proline to serine substitution in residue 115 of the deduced amino acid sequence. Functional expression of the mutant gene in wild-type Synechococcus and in E. coli confirmed that this amino-acid substitution is responsible for the resistance. Yet the deduced amino-acid sequence as compared with othjer ALS proteins supports the notion that the amino-acid context of the substitution is important for the resistance.


Sign in / Sign up

Export Citation Format

Share Document