The reaction of μ-oxo-bis(phthalocyaninato)iron(III) with hydrogen sulphide in the presence of pyridine: Evidence for axial coordination of dichloromethane

2005 ◽  
Vol 09 (03) ◽  
pp. 198-205 ◽  
Author(s):  
Fabrizio Monacelli ◽  
Elisa Viola

The oxo-bridged complex ( py ) FePc - O - FePc ( py ) ( py = pyridine , Pc = phthalocyaninato dianion) reacts in dichloromethane with hydrogen sulphide giving elementary sulphur and the reduced ( py )2( FePc ) complex in the stoichiometric ratio 1:1. Under excess py and H2S , the reaction is first-order and the rate constant at a given py concentration is an increasing function of the reducing agent concentration, with asymptotic tendency to a limiting value. This latter depends on the pyridine concentration being higher the lower is the base concentration. When the reaction is carried out in pure pyridine, the rate constant is, instead, a strictly linear function of [ H2S ], with zero intercept. A reaction mechanism is proposed where the dichloromethane is directly involved in the axial coordination about the iron centers and H2S competes efficiently with both pyridine and solvent.

1989 ◽  
Vol 259 (3) ◽  
pp. 929-930 ◽  
Author(s):  
M Bruch ◽  
J G Bieth

We have used the proflavin displacement method and a stopped-flow apparatus to measure the rate constant for the binding of 2 microM-chymotrypsin to 20-125 microM-alpha 1-proteinase inhibitor. The observed pseudo-first-order constant showed a hyperbolic dependence on alpha 1-proteinase inhibitor concentration, suggesting a reaction mechanism in which a fast pre-equilibrium (K = 0.19 mM) is followed by a first-order formation of the final complex (k = 252 s-1).


1989 ◽  
Vol 67 (2) ◽  
pp. 279-283
Author(s):  
Guillermo López-Cueto ◽  
Mlguel Duarte

The rate of formation of hexacyanomanganate(II) is first-order in Mn(II) and depends on both the cyanide and hydroxide concentrations. The experimental results agree with a reaction mechanism which involves manganese(II) cyano- and hydroxo-complexes. Chromate slowly oxidizes hexacyanomanganate(II). The kinetics of this reaction is first-order on hexacyanomanganate(II), and the experimental rate constant depends on the chromate concentration according to the equation kexp = 3kK[Cr(VI)]/(1 + K[Cr(VI)]). The effect of both the CN− and the OH− ions is slighter. A tentative mechanism is proposed which involves a pre-equilibrium with the formation of a hexacyanomanganate(II)–chromate complex, followed by a monomolecular decomposition. By comparing this reaction mechanism with that of other one-electron chromate reductions, it appears that hexacyanomanganate(II) behaves like octacyanomolybdate(IV) rather than like hexacyanoferrate(II) and other substitution-inert reductants. Both the equilibrium constants for the complex formation and the rate constant for its decomposition are evaluated, and voltammetric evidence of the formation of hexacyanomanganate(III)–chromate complexes is also presented. Keywords: hexacyanomanganate(II), formation rate, oxidation with chromate, kinetics, mechanism.


Author(s):  
Kamlesh Dashora ◽  
Shailendra Saraf ◽  
Swarnalata Saraf

Sustained released tablets of diclofenac sodium (DIC) and tizanidine hydrochloride (TIZ) were prepared by using different proportions of cellulose acetate (CA) as the retardant material. Nine formulations of tablets having different proportion of microparticles developed by varied proportions of polymer: drug ratio ‘’i.e.’’; 1:9 -1:3 for DIC and 1:1 – 3:1 for TIZ. Each tablet contained equivalent to 100 mg of DIC and 6mg of TIZ. The prepared microparticles were white, free flowing and spherical in shape (SEM study), with  the particle size varying from 78.8±1.94 to 103.33±1.28 µm and 175.92± 9.82 to 194.94±14.28µm for DIC  and TIZ, respectively.  The first order rate constant K1 of formulations were found to be in the range of  K1 = 0.117-0.272 and 0.083- 0.189 %hr-1for DIC and TIZ, respectively. The value of exponent coefficient (n) was found to be in the range of 0.6328-0.9412  and 0.8589-1.1954 for DIC and TIZ respectively indicates anomalous  to  non anomalous transport type of diffusions among different formulations


1970 ◽  
Vol 48 (21) ◽  
pp. 3291-3299 ◽  
Author(s):  
K. G. McCurdy ◽  
B. P. Erno

An investigation has been made of the kinetics of hydration of tricalcium silicate at several temperatures in a large excess of water in the presence of various added ions. The rate data have been interpreted by a reaction mechanism which involves: (a) the first order hydration of tricalcium silicate to form an intermediate product, 1.5CaO•SiO2, which can react by two pathways, (b) the direct first order decomposition of intermediate, 1.5CaO•SiO2, to form lime and silica or (b′) complexing of intermediate with silica and subsequent decomposition to form lime and silica. This reaction mechanism predicts the rate of production of base during the hydration. The effect of various added ions is interpreted in terms of the proposed mechanism.Rate constants and activation energies for the various steps in the proposed mechanism are reported.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


There have not appeared recently any new determinations of the rate of change of the volume coefficient of expansion of condensable gases at pressures in the neighbourhood of a half to one metre. The work of Henning and Heuse and Heuse and Otto has been confined to a study of the permanent gases, their results leading to the conclusion that up to a pressure of 1 metre the rate of change of either the pressure or volume coefficient is a linear function of the pressure. Our knowledge of the behaviour of the condensable gases in this connection rests almost entirely on the very careful work of Chappuis, who in 1907 made a series of accurate determinations of the volume coefficient of expansion of carbon dioxide at a series of pressures from 1500 mm. to 500 mm. and over several temperature ranges. The investigation led to one unexpected conclusion which Chappuis left largely unexplained. On linear extrapolation to zero pressure of the graph of pressure against the mean coefficient of expansion over temperature intervals 0-20º, 0-40º, 0-100ºC., the limiting value of the coefficient rose from the normal value of 0.003661 for the 0-20º determinations to 0.003671 for those made over the range 0-100ºC. Chappuis concludes "that condensation on the reservoir surface plays a part in the irregularities but it is difficult to obtain a satisfactory explanation." As far back as 1853 Magnus demonstrated that the adsorption of sukphur dioxide on glass was sufficient to affect measurements of the expansion coefficient of gasses, and the importance of this error was recognized by Chappuis who in 1879 applied a correction to Regnault's measurements. Richards and Mark and Baly and Ramsay have pointed out the necessity for a knowledge of the amount of adsorption on the walls of the containing vessels when undertaking such determinations.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


1975 ◽  
Vol 149 (3) ◽  
pp. 627-635 ◽  
Author(s):  
S S Chen ◽  
P C Engel

1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10°C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.


2006 ◽  
Vol 71 (3) ◽  
pp. 411-422 ◽  
Author(s):  
David Havlíček ◽  
Libor Turek ◽  
Jiří Plocek ◽  
Zdeněk Mička

Solubility in the (Me4N)2SeO4-H2SeO4-H2O and (Me4N)2SeO4-Li2SeO4-H2O systems were studied. The new compounds, tetramethylammonium hydrogenselenate monohydrate ((Me4N)HSeO4·H2O) and lithium tetramethylammonium selenate tetrahydrate (Li(Me4N)SeO4·4H2O), have been found in these systems. Both substances were characterised by chemical analysis and IR molecular spectroscopy. Both of the title substances decompose under the influence of X-radiation and, thus, their structures cannot be determined. The radiolysis of both substances was studied in greater detail. Tetramethylammonium hydrogenselenate monohydrate is dehydrated by X-radiation to form the anhydrous salt. The reaction is controlled by first-order kinetics with a rate constant of 1.30(3) × 10-3 s-1.


1996 ◽  
Vol 50 (11) ◽  
pp. 1352-1359 ◽  
Author(s):  
Ping Chiang ◽  
Kuang-Pang Li ◽  
Tong-Ming Hseu

An idealized model for the kinetics of benzo[ a]pyrene (BaP) metabolism is established. As observed from experimental results, the BaP transfer from microcrystals to the cell membrane is definitely a first-order process. The rate constant of this process is signified as k1. We describe the surface–midplane exchange as reversible and use rate constants k2 and k3 to describe the inward and outward diffusions, respectively. The metabolism is identified as an irreversible reaction with a rate constant k4. If k2 and k3 are assumed to be fast and not rate determining, the effect of the metabolism rate, k4, on the number density of BaP in the midplane of the microsomal membrane, m3, can be estimated. If the metabolism rate is faster than or comparable to the distribution rates, k2 and k3, the BaP concentration in the membrane midplane, m3, will quickly be dissipated. But if k4 is extremely small, m3 will reach a plateau. Under conditions when k2 and k3 also play significant roles in determining the overall rate, more complicated patterns of m3 are expected.


Sign in / Sign up

Export Citation Format

Share Document