scholarly journals Micromolar free calcium exposes ouabain-binding sites in digitonin-permeabilized Xenopus laevis oocytes

1990 ◽  
Vol 269 (3) ◽  
pp. 757-766 ◽  
Author(s):  
G Schmalzing ◽  
S Kröner

As demonstrated previously, digitonin-permeabilized Xenopus oocytes have a large internal pool of sodium pumps which are inaccessible to cytosolic ouabain [Schmalzing, Kröner & Passow (1989) Biochem. J. 260, 395-399]. Access to internal ouabain-binding sites required permeabilization of inner membranes with SDS. In the present study, micromolar free Ca2+ was found to stimulate ouabain binding in the digitonin-permeabilized cells (K0.5 0.5 microM-Ca2+, h 1.9, average of seven experiments) without disrupting intracellular membranes. Sustained incubation at 9 microM-Ca2+ was as effective as SDS in inducing access to the ouabain-binding sites of the internal sodium pumps. Omission of either Mg2+ or ATP completely abolished the Ca2+ effect. Half-maximal stimulation by Ca2+ required approx. 0.4 mM-MgATP. Of a variety of nucleotides tested, none was as effective as ATP (rank order ATP greater than ADP greater than ATP[S] (adenosine 5′-[gamma-thio]triphosphate) greater than CTP greater than UTP greater than ITP = XTP greater than GTP). Pi, AMP, cyclic AMP, cyclic GMP, GTP[S] (guanosine 5′-[gamma-thio]triphosphate) and a stable ATP analogue p[NH]ppA (adenosine 5′-[beta gamma-imido]triphosphate), were ineffective. The metalloendoproteinase inhibitor carbobenzoxy-Gly-Phe-amide reduced the Ca2+ effect by some 50%. Inhibitors of chymotrypsin and the Ca2+ proteinase calpain had no effect. Ca2+ ionophores (A23187 and ionomycin) and the polycations neomycin and polymixin B blocked the Ca2+ response entirely. Neomycin also abolished a Ca2(+)-independent stimulation of ouabain binding by the wasp venom mastoparan. The requirements for increasing the accessibility of ouabain-binding sites are remarkably similar to those for exocytosis in secretory cells, suggesting that oocytes and eggs possess a Ca2(+)-regulated pathway for the plasma membrane insertion of sodium pumps.

1997 ◽  
Vol 200 (2) ◽  
pp. 303-314
Author(s):  
T J Shuttleworth

The secretion of ions and fluid plays a critical role in a variety of physiological activities that are vital to homeostatic mechanisms in animals. Control of such secretory activity is achieved by a range of neurotransmitters and hormones many of which act intracellularly by generating the second messenger inositol 1,4,5-trisphosphate (InsP3) and increasing cytosolic free calcium ion concentrations ([Ca2+]i). These increases are achieved by a combination of the InsP3-induced release of Ca2+ from specific intracellular stores and the activation of Ca2+ entry from the extracellular environment. The [Ca2+]i signal represents a balance between the adequate activation of components of the secretory mechanism and the avoidance of [Ca2+]i levels that are toxic to the cell. Resting [Ca2+]i is maintained low by the action of Ca2+ pumps on the intracellular stores and plasma membrane, with the result that gradients for Ca2+ movement into the cytosol from either of these two sources are very large and there is considerable potential for achieving rapid increases in [Ca2+]i. Consequently, for successful Ca2+ signalling, it is imperative that these two mechanisms of raising [Ca2+]i (i.e. Ca2+ release and Ca2+ entry) are closely integrated. Current models emphasize the activation of Ca2+ entry as a downstream result of the emptying of the intracellular stores ("capacitative' model). Whilst this may be true for situations of maximal stimulation, recent experiments on the oscillatory [Ca2+]i responses typical of more physiological levels of stimulation indicate a previously unsuspected, independent activation of Ca2+ entry involving arachidonic acid. This arachidonic-acid-activated entry plays a key role, along with InsP3, in inducing the repetitive release of Ca2+ from the stores to produce the [Ca2+]i oscillations. In this way, the two components responsible for the elevation of [Ca2+]i are intimately related and their dual effects closely coordinated, resulting in the finely tuned control of agonist-induced changes in [Ca2+]i.


1989 ◽  
Vol 260 (2) ◽  
pp. 395-399 ◽  
Author(s):  
G Schmalzing ◽  
S Kröner ◽  
H Passow

Ouabain binding was studied in Xenopus laevis oocytes permeabilized by detergents. The behaviour of markers showed that 10 microM-digitonin selectively disrupts the plasma membrane. In the presence of ATP, oocytes permeabilized at 10 microM-digitonin bound no more ouabain molecules than were required to abolish active 86Rb+ uptake in the intact cells. However, the ouabain binding capacity increased approx. 2-fold when inner membranes were disrupted by SDS or excess digitonin, as judged from the accompanying release of the lysosomal marker beta-hexosaminidase. The results suggest that oocytes have a large internal pool of functional sodium pumps.


1991 ◽  
Vol 279 (2) ◽  
pp. 329-336 ◽  
Author(s):  
G Schmalzing ◽  
S Gloor ◽  
H Omay ◽  
S Kröner ◽  
H Appelhans ◽  
...  

Recent evidence suggests that the beta subunit of the Na+ pump is essential for the alpha subunit to express catalytic activity and for assembly of the holoenzyme in the plasma membrane. We report here that injection into Xenopus laevis oocytes of cRNAs specific for beta 1 subunit isoforms of the Na+ pump of four species (Torpedo californica, chicken, mouse and rat) causes a time-dependent increase in the number of ouabain-binding sites, both in the plasma membrane and in internal membranes. Expression of the beta 1 subunit of the Na+ pump of mouse and rat in the oocytes could be substantiated by immunoprecipitation using a polyclonal antiserum against the mouse beta 1 subunit. Scatchard analysis in permeabilized cells disclosed that the affinity for ouabain is unchanged after expression of each of the beta 1 subunits. A proportional increase in ouabain-sensitive 86Rb+ uptake indicates that the additionally expressed ouabain-binding sites on the cell surface represent functional Na+ pumps. The findings support the concept of Geering. Theulaz, Verrey, Häuptle & Rossier [(1989) Am. J. Physiol. 257, C851-C858] that beta 1 subunits expressed in oocytes associate with an excess of endogenous alpha subunits of the Na+ pump to form a hybrid enzyme. In addition, all of the beta 1 isoforms investigated in the present study were also capable of combining with the co-expressed alpha 1 subunit of the Torpedo Na+ pump to produce a functional enzyme. Injection of cRNA encoding for the Torpedo alpha 1 subunit alone had no effect on the ouabain-binding capacity of the surface and intracellular membranes of the oocyte.


1977 ◽  
Vol 75 (1) ◽  
pp. 74-94 ◽  
Author(s):  
SA Ernst ◽  
JW Mills

The distribution of Na+ pump sites (Na+-K+-ATPase) in the secretory epithelium of the avian salt gland was demonstrated by freeze-dry autoradiographic analysis of [(3)H] ouabain binding sites. Kinetic studies indicated that near saturation of tissue binding sites occurred when slices of salt glands from salt-stressed ducks were exposed to 2.2 μM ouabain (containing 5 μCi/ml [(3)H]ouabain) for 90 min. Washing with label-free Ringer's solution for 90 min extracted only 10% of the inhibitor, an amount which corresponded to ouabain present in the tissue spaces labeled by [(14)C]insulin. Increasing the KCl concentration of the incubation medium reduced the rate of ouabain binding but not the maximal amount bound. In contrast to the low level of ouabain binding to salt glands of ducks maintained on a freshwater regimen, exposure to a salt water diet led to a more than threefold increase in binding within 9-11 days. This increase paralleled the similar increment in Na+-K+-ATPase activity described previously. [(3)H]ouabain binding sites were localized autoradiographically to the folded basolateral plasma membrane of the principal secretory cells. The luminal surfaces of these cells were unlabeled. Mitotically active peripheral cells were also unlabeled. The cell-specific pattern of [(3)H]ouabain binding to principal secretory cells and the membrane-specific localization of binding sites to the nonluminal surfaces of these cells were identical to the distribution of Na+-K+-ATPase as reflected by the cytochemical localization of ouabain-sensitive and K+-dependent nitrophenyl phosphatase activity. The relationship between the nonluminal localization of Na+-K+-ATPase and the possible role of the enzyme n NaCl secretion is considered in the light of physiological data on electrolyte transport in salt glands and other secretory epithelia.


1978 ◽  
Vol 31 (1) ◽  
pp. 179-197
Author(s):  
F.E. Hossler ◽  
M.P. Sarras ◽  
R.J. Barrnett

The conditions necessary for optimal ouabain binding in the avian salt gland were examined. Binding was enhanced by ATP and Mg2+ and was decreased by K+, but was unaffected by added Na+. Both maximal binding and complete inhibition of Na, K-ATPase activity were obtained at 1 X 10(−6) M ouabain. Half maximal binding and half maximal inhibition of Na, K-ATPase activity were obtained at 1.7 X 10(−7) M ouabain. Ouabain binding increased in parallel with increasing specific activity of the Na, K-ATPase duringsalt-induced salt gland specialization. The ratio of Na, K-ATPase activity to ouabain-binding sites remained constant during the salt stress as well as after removal of the salt diet. Autoradiography indicated binding to partially and fully differentiated secretory cells of the salt gland. The ouabain binding assay appeared to be a more useful indicator of membrane amplification than Na, K-ATPase activity since it is rapid, essentially irreversible, less sensitive to tissue fixatives, and quantitatively measured the number of enzyme molecules.


1987 ◽  
Vol 65 (2) ◽  
pp. 95-104 ◽  
Author(s):  
Alberto Severini ◽  
K. V. S. Prasad ◽  
Anthony F. Almeida ◽  
J. Gordin Kaplan

The early activation of Na+,K+-ATPase-mediated ion fluxes after concanavalin A (ConA) stimulation of pig lymphocytes is caused by an increase in intracellular Na+ concentration. A second mechanism of regulation of Na+,K+-ATPase activity becomes apparent between 3 and 5 h after mitogenic stimulation, but prior to onset of increase in cell volume; this consists of an increase (about 75%) in the number of ouabain-binding sites (from 35 × 103 ± 12 × 103/cell in resting to 60 × 103 ± 27 × 103/cell in activated lymphocytes). The increase in ouabain binding was attributed to an increase in the number of active Na+,K+-ATPase molecules, based on the following evidence: (i) there was an increase in the Vmax of ouabain binding, without variation in the Km; (ii) the increase in ouabain binding was accompanied by a proportional increase in K+ influx, when the assay was performed in the presence of the Na+ ionophore monesin, which was used to eliminate the difference in intracellular Na+ concentration between resting and activated cells; (iii) there was proportionality between ouabain-inhibitable ATPase activity in permeabilized cells and the number of ouabain-binding sites in resting and activated lymphocytes. The ConA-induced increase in ouabain-binding sites was influenced neither by amiloride nor by incubation in low Na+ medium, under conditions which prevented both increase in intracellular Na+ concentration and K+ influx. Increase in intracellular Na+ concentration was ineffective in altering the number of active pump molecules in resting cells. During incubation with ConA, the presence of ouabain did not affect the increase in ouabain-binding sites; thus, regulation of the number of pump sites is independent of the regulation of their activity. The ConA-induced increase in number of ouabain-binding sites did not require protein synthesis; indeed, cycloheximide, anisomycin, and puromycin, under conditions in which they inhibited protein synthesis by 95%, induced the increase to approximately the same extent as did ConA. This suggests the presence in resting lymphocytes of a rapidly turning over protein that either prevents the ATPase subunits from assembling or from integrating into the membrane.


1987 ◽  
Vol 105 (1) ◽  
pp. 191-197 ◽  
Author(s):  
T W Howell ◽  
S Cockcroft ◽  
B D Gomperts

Rat mast cells, pretreated with metabolic inhibitors and permeabilized by streptolysin-O, secrete histamine when provided with Ca2+ (buffered in the micromolar range) and nucleoside triphosphates. We have surveyed the ability of various exogenous nucleotides to support or inhibit secretion. The preferred rank order in support of secretion is ITP greater than XTP greater than GTP much greater than ATP. Pyrimidine nucleotides (UTP and CTP) are without effect. Nucleoside diphosphates included alongside Ca2+ plus ITP inhibit secretion in the order 2'-deoxyGDP greater than GDP greater than o-GDP greater than ADP approximately equal to 2'deoxyADP approximately equal to IDP. Secretion from the metabolically inhibited and permeabilized cells can also be induced by stable analogues of GTP (GTP-gamma-S greater than GppNHp greater than GppCH2p) which synergize with Ca2+ to trigger secretion in the absence of phosphorylating nucleotides. ATP enhances the effective affinity for Ca2+ and GTP analogues in the exocytotic process but does not alter the maximum extent of secretion. The results suggest that the presence of Ca2+ combined with activation of events controlled by a GTP regulatory protein provide a sufficient stimulus to exocytotic secretion from mast cells.


1988 ◽  
Vol 139 (1) ◽  
pp. 253-266 ◽  
Author(s):  
D. Aunis ◽  
M. F. Bader

Chromaffin cells of the adrenal medulla synthesize, store and secrete catecholamines. These cells contain numerous electron-dense secretory granules which discharge their contents into the extracellular space by exocytosis. The subplasmalemmal area of the chromaffin cell is characterized by the presence of a highly organized cytoskeletal network. F-Actin seems to be exclusively localized in this area and together with specific actin-binding proteins forms a dense viscoelastic gel; fodrin, vinculin and caldesmon, three actin cross-linking proteins, and gelsolin, an actin-severing protein, are found in this subplasmalemmal region. Since fodrin-, caldesmon- and alpha-actinin-binding sites exist on secretory granule membranes, actin filaments can also link secretory granules. Chromaffin granules can be entrapped in this subplasmalemmal lattice and thus the cytoskeleton acts as a barrier preventing exocytosis. When cells are stimulated, molecular rearrangements of the subplasmalemmal cytoskeleton take place: F-actin depolymerizes and fodrin reorganizes into patches. In addition, introduction of monospecific antifodrin immunoglobulins into digitonin-permeabilized cells blocks exocytosis, demonstrating the crucial role of this actin-binding protein. In bacterial toxin-permeabilized chromaffin cells, experiments using actin-perturbing agents such as cytochalasin D and DNAase I suggest that exocytosis is in part controlled by the cytoskeleton. The intracellular signal governing the cytoskeletal reorganization (associated with exocytosis) is calcium. Calcium inhibits some and activates other actin-binding proteins and consequently causes dissolution of the subplasmalemmal cytoskeleton. This dissolution of cytoskeletal filaments should result in granule detachment and permit granules free access to exocytotic sites on the plasma membrane.


1997 ◽  
Vol 272 (5) ◽  
pp. R1461-R1471 ◽  
Author(s):  
M. L. Fiorotto ◽  
T. A. Davis

Biochemical maturation accompanies the rapid accretion of skeletal muscle in early life. We wished to determine whether changes in muscle protein accretion, induced by variations in food intake, altered the biochemical maturation of the soleus and the extensor digitorum longus (EDL) muscles. Rat pups were suckled in litters of 4, 10, or 16 to induce differences in food intake. At 21 days of age, muscle protein and DNA were quantitated and biochemical maturation was assessed from measurement of [3H]ouabain-binding site abundance and myosin isoform composition. Differences in food intake produced a twofold range in body and muscle weights and protein and DNA contents. Protein accretion was more sensitive to nutrient intake in the soleus than in the EDL. Serum 3-5,3'-triiodothyronine (T3) and insulin concentrations decreased with a reduction in food intake. Total ouabain-binding sites were not altered in either muscle and were independent of muscle size. Differences in myosin isoform composition were more pronounced for the soleus than the EDL, but were relatively small in magnitude. These results demonstrate that, whereas postnatal muscle protein accretion and circulating hormone concentrations are sensitive to food intake, the biochemical maturation is resilient. The immature muscle does not exhibit the fiber type-specific responses to malnutrition typical of mature muscle.


2018 ◽  
Vol 19 (9) ◽  
pp. 2489 ◽  
Author(s):  
Lin Zhang ◽  
Christian Aalkjaer ◽  
Vladimir Matchkov

Inhibition of the Na,K-ATPase by ouabain potentiates vascular tone and agonist-induced contraction. These effects of ouabain varies between different reports. In this study, we assessed whether the pro-contractile effect of ouabain changes with arterial diameter and the molecular mechanism behind it. Rat mesenteric small arteries of different diameters (150–350 µm) were studied for noradrenaline-induced changes of isometric force and intracellular Ca2+ in smooth muscle cells. These functional changes were correlated to total Src kinase and Src phosphorylation assessed immunohistochemically. High-affinity ouabain-binding sites were semi-quantified with fluorescent ouabain. We found that potentiation of noradrenaline-sensitivity by ouabain correlates positively with an increase in arterial diameter. This was not due to differences in intracellular Ca2+ responses but due to sensitization of smooth muscle cell contractile machinery to Ca2+. This was associated with ouabain-induced Src activation, which increases with increasing arterial diameter. Total Src expression was similar in arteries of different diameters but the density of high-affinity ouabain binding sites increased with increasing arterial diameters. We suggested that ouabain binding induces more Src kinase activity in mesenteric small arteries with larger diameter leading to enhanced sensitization of the contractile machinery to Ca2+.


Sign in / Sign up

Export Citation Format

Share Document