Food intake alters muscle protein gain with little effect on Na(+)-K(+)-ATPase and myosin isoforms in suckled rats

1997 ◽  
Vol 272 (5) ◽  
pp. R1461-R1471 ◽  
Author(s):  
M. L. Fiorotto ◽  
T. A. Davis

Biochemical maturation accompanies the rapid accretion of skeletal muscle in early life. We wished to determine whether changes in muscle protein accretion, induced by variations in food intake, altered the biochemical maturation of the soleus and the extensor digitorum longus (EDL) muscles. Rat pups were suckled in litters of 4, 10, or 16 to induce differences in food intake. At 21 days of age, muscle protein and DNA were quantitated and biochemical maturation was assessed from measurement of [3H]ouabain-binding site abundance and myosin isoform composition. Differences in food intake produced a twofold range in body and muscle weights and protein and DNA contents. Protein accretion was more sensitive to nutrient intake in the soleus than in the EDL. Serum 3-5,3'-triiodothyronine (T3) and insulin concentrations decreased with a reduction in food intake. Total ouabain-binding sites were not altered in either muscle and were independent of muscle size. Differences in myosin isoform composition were more pronounced for the soleus than the EDL, but were relatively small in magnitude. These results demonstrate that, whereas postnatal muscle protein accretion and circulating hormone concentrations are sensitive to food intake, the biochemical maturation is resilient. The immature muscle does not exhibit the fiber type-specific responses to malnutrition typical of mature muscle.

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1872
Author(s):  
Justin Dela Cruz ◽  
David Kahan

Protein intake is an important factor for augmenting the response to resistance training in healthy individuals. Although food intake can help with anabolism during the day, the period of time during sleep is typically characterized by catabolism and other metabolic shifts. Research on the application of nighttime casein protein supplementation has introduced a new research paradigm related to protein timing. Pre-sleep casein supplementation has been attributed to improved adaptive response by skeletal muscle to resistance training through increases in muscle protein synthesis, muscle mass, and strength. However, it remains unclear what the effect of this nutritional strategy is on non-muscular parameters such as metabolism and appetite in both healthy and unhealthy populations. The purpose of this systematic review is to understand the effects of pre-sleep casein protein on energy expenditure, lipolysis, appetite, and food intake in both healthy and overweight or obese individuals. A systematic review following PRISMA guidelines was conducted in CINAHL, Cochrane, and SPORTDiscus during March 2021, and 11 studies met the inclusion criteria. A summary of the main findings shows limited to no effects on metabolism or appetite when ingesting 24–48 g of casein 30 min before sleep, but data are limited, and future research is needed to clarify the relationships observed.


1978 ◽  
Vol 24 (4) ◽  
pp. 413-427 ◽  
Author(s):  
W.G. Hall ◽  
Jay S. Rosenblatt
Keyword(s):  

1993 ◽  
Vol 265 (2) ◽  
pp. R334-R340 ◽  
Author(s):  
T. A. Davis ◽  
M. L. Fiorotto ◽  
H. V. Nguyen ◽  
P. J. Reeds

To compare the sensitivity of muscle protein synthesis to food intake in neonatal and weaned rats, 5- and 16-day-old suckled rats and 28-day-old weaned rats were either fed, fasted for 8-10 h, or refed for 1-4 h after an 8-h fast. Protein synthesis was measured in vivo in soleus and plantaris muscles with a large dose of L-[4-3H]phenylalanine. In fed rats, fractional rates of protein synthesis (KS) decreased with age. Fasting decreased KS, and refeeding increased KS most in 5-day-old animals, less in 16-day-old rats, and least in 28-day-old rats. In 5-day-old rats, there were no differences in KS between soleus and plantaris muscles in the fed state and after fasting and refeeding; at 28 days, KS was higher in soleus than in plantaris in fed rats, and the soleus did not respond to fasting and refeeding. In rats at all three ages, the concentration of most plasma amino acids decreased during fasting; when 5-day-old rats were refed, plasma amino acid concentrations increased, but not to the levels in the fed state. Plasma insulin concentrations increased with age. Plasma insulin concentrations decreased more rapidly with fasting and increased more extensively with refeeding in 5-day-old rats than in older rats. These results suggest that muscle protein synthesis is more responsive to food intake in young suckled rats than in older suckled or weaned rats; this increased responsiveness is accompanied by greater changes in circulating insulin concentrations.


1996 ◽  
Vol 270 (1) ◽  
pp. C313-C320 ◽  
Author(s):  
C. N. Mayne ◽  
H. Sutherland ◽  
J. C. Jarvis ◽  
S. J. Gilroy ◽  
A. J. Craven ◽  
...  

Chronic electrical stimulation of skeletal muscle at 10 Hz induces fast-to-slow fiber type transformation. Does a lower aggregate amount of activity lead to a less complete transformation, or does it produce the same transformation over a longer time course? We examined this question by subjecting adult rabbit tibialis anterior and extensor digitorum longus muscles to continuous stimulation at 2.5 Hz for 2-12 wk. Most of the fibers acquired the histochemical and immunocytochemical characteristics of type 2A, not type 1, fibers. There was a corresponding rise in oxidative activity, but this was accompanied by a marked decline in anaerobic glycolysis. The activities of hexokinase and 3-oxoacid CoA-transferase stopped increasing after 2 wk, glutamate oxaloacetate transaminase after 4 wk, and beta-hydroxyacyl-CoA dehydrogenase after 6 wk of stimulation. Succinate dehydrogenase, citrate synthase, lactate dehydrogenase, and creatine phosphokinase continued to change up to 12 wk of stimulation. Changes in enzyme activity were not as rapid or as marked as those observed for stimulation at 10 Hz, and none showed the typical two-phase response of oxidative enzyme activities to stimulation at 10 Hz. The latter may therefore be dependent on induction of type 1 myosin isoforms.


2018 ◽  
Vol 19 (9) ◽  
pp. 2489 ◽  
Author(s):  
Lin Zhang ◽  
Christian Aalkjaer ◽  
Vladimir Matchkov

Inhibition of the Na,K-ATPase by ouabain potentiates vascular tone and agonist-induced contraction. These effects of ouabain varies between different reports. In this study, we assessed whether the pro-contractile effect of ouabain changes with arterial diameter and the molecular mechanism behind it. Rat mesenteric small arteries of different diameters (150–350 µm) were studied for noradrenaline-induced changes of isometric force and intracellular Ca2+ in smooth muscle cells. These functional changes were correlated to total Src kinase and Src phosphorylation assessed immunohistochemically. High-affinity ouabain-binding sites were semi-quantified with fluorescent ouabain. We found that potentiation of noradrenaline-sensitivity by ouabain correlates positively with an increase in arterial diameter. This was not due to differences in intracellular Ca2+ responses but due to sensitization of smooth muscle cell contractile machinery to Ca2+. This was associated with ouabain-induced Src activation, which increases with increasing arterial diameter. Total Src expression was similar in arteries of different diameters but the density of high-affinity ouabain binding sites increased with increasing arterial diameters. We suggested that ouabain binding induces more Src kinase activity in mesenteric small arteries with larger diameter leading to enhanced sensitization of the contractile machinery to Ca2+.


1976 ◽  
Vol 193 (1112) ◽  
pp. 217-234 ◽  

A study has been made of ouabain binding and the formation of phosphoprotein from ATP and inorganic phosphate (P i ) with plasma membranes from rabbit and guinea-pig kidney cortex. The aim of the work was first to see whether apparently conflicting results in the literature arise from membranes being prepared by different methods and, secondly, to evaluate the results in relation to the Na pump mechanism. Three different methods were used to prepare membranes, types A, Au and B. The preparations differed markedly when ouabain binding was supported by Mg alone both in the amount bound and in the affinity. Mgdependent binding was influenced by 1 mM P i but the extent of stimulation varied according to the preparations. The main effect of P i was to decrease the equilibrium dissociation constant marginally for type A membranes but eightfold for type B membranes. In contrast, the maximum number of binding sites was little affected. The membrane affinity for ouabain in relation to Mg and P i therefore depended on the method of preparation. In the reaction with Mg-ATP, type Au and B membranes were both phosphorylated to about the same extent. On the other hand, they reacted differently with P i , type B membranes being phosphorylated (in the presence of Mg and ouabain) to the same extent as with ATP, whereas under the same conditions, type Au membranes gave only 15 % of the phosphorylation found with ATP. The phosphoprotein, however formed, whether from ATP or P i , or type Au or type B membranes, migrated in the same way on gel electrophoresis to give a relative molecular mass of approximately 90000. With each preparation, over a tenfold range of ATPase activity, there was a constant value of 1.2 in the ratio of the maximum phosphorylation by ATP compared with the maximum number of ouabain-binding sites. These results show that membranes prepared in different ways exhibit some consistent properties of the Na pump but also striking anomalies. In view of likely morphological differences in the preparations, it is concluded that the inconsistent features, notably the responses to Mg and P i , are an unreliable guide to the pump mechanism.


2000 ◽  
Vol 279 (6) ◽  
pp. C1677-C1684 ◽  
Author(s):  
Esther E. Dupont-Versteegden ◽  
René J. L. Murphy ◽  
John D. Houlé ◽  
Cathy M. Gurley ◽  
Charlotte A. Peterson

We have shown that cycling exercise combined with fetal spinal cord transplantation restored muscle mass reduced as a result of complete transection of the spinal cord. In this study, mechanisms whereby this combined intervention increased the size of atrophied soleus and plantaris muscles were investigated. Rats were divided into five groups ( n = 4, per group): control, nontransected; spinal cord transected at T10 for 8 wk (Tx); spinal cord transected for 8 wk and exercised for the last 4 wk (TxEx); spinal cord transected for 8 wk with transplantation of fetal spinal cord tissue into the lesion site 4 wk prior to death (TxTp); and spinal cord transected for 8 wk, exercised for the last 4 wk combined with transplantation 4 wk prior to death (TxExTp). Tx soleus and plantaris muscles were decreased in size compared with control. Exercise and transplantation alone did not restore muscle size in soleus, but exercise alone minimized atrophy in plantaris. However, the combination of exercise and transplantation resulted in a significant increase in muscle size in soleus and plantaris compared with transection alone. Furthermore, myofiber nuclear number of soleus was decreased by 40% in Tx and was not affected in TxEx or TxTp but was restored in TxExTp. A strong correlation ( r = 0.85) between myofiber cross-sectional area and myofiber nuclear number was observed in soleus, but not in plantaris muscle, in which myonuclear number did not change with any of the experimental manipulations. 5′-Bromo-2′-deoxyuridine-positive nuclei inside the myofiber membrane were observed in TxExTp soleus muscles, indicating that satellite cells had divided and subsequently fused into myofibers, contributing to the increase in myonuclear number. The increase in satellite cell activity did not appear to be controlled by the insulin-like growth factors (IGF), as IGF-I and IGF-II mRNA abundance was decreased in Tx soleus and plantaris, and was not restored with the interventions. These results indicate that, following a relatively long postinjury interval, exercise and transplantation combined restore muscle size. Satellite cell fusion and restoration of myofiber nuclear number contributed to increased muscle size in the soleus, but not in plantaris, suggesting that cellular mechanisms regulating muscle size differ between muscles with different fiber type composition.


Sign in / Sign up

Export Citation Format

Share Document