scholarly journals Cell-cycle-dependent phosphorylation and activity of Chinese-hamster ovary topoisomerase II

1993 ◽  
Vol 293 (1) ◽  
pp. 297-304 ◽  
Author(s):  
D A Burden ◽  
L J Goldsmith ◽  
D M Sullivan

Cell-cycle-dependent protein levels and phosphorylation of DNA topoisomerase II in relation to its catalytic and cleavage activities were studied in Chinese-hamster ovary cells. Immunoreactive topoisomerase II protein levels were maximal in G2-phase cells, intermediate in S- and M-phase cells, and minimal in a predominantly G1-phase population. When the phosphorylation of topoisomerase II in vivo was corrected for differences in specific radioactivity of intracellular ATP, the apparent phosphorylation of S- and M-phase topoisomerase II was altered significantly. Relative phosphorylation in vivo was found to be greatest in M-phase cells and decreased in the other populations in the order: S > G2 > asynchronous. Phosphoserine was detected in every phase of the cell cycle, with a minor contribution of phosphothreonine demonstrated in M-phase cells. Topoisomerase II activity measured in vivo as 9-(4,6-O-ethylidene-beta-D-glucopyranosyl)-4′-demethylepipodophylloto xin (VP-16)-induced DNA double-strand breaks (determined by neutral filter elution) increased in the order: asynchronous < S < G2 < M. Topoisomerase II cleavage activity, assayed in vitro as the formation of covalent enzyme-DNA complexes, was lowest in S phase, intermediate in asynchronous and G2-phase cells, and maximal in M phase. Topoisomerase II decatenation activity was 1.6-1.8-fold greater in S-, G2- and M-phase populations relative to asynchronous cells. Therefore DNA topoisomerase II activity measured both in vivo and in vitro is maximal in M phase, that phase of the cell cycle with an intermediate level of immunoreactive topoisomerase II but the highest level of enzyme phosphorylation. The discordance between immunoreactive topoisomerase II protein levels, adjusted relative phosphorylation, catalytic activity, cleavage activity and amino acid residue(s) modified, suggests that the site of phosphorylation may be cell-cycle-dependent and critical in determining catalytic and cleavage activity.

Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 57-71 ◽  
Author(s):  
Ann Sutton ◽  
Richard Freiman

Abstract The CAK1 gene encodes the major CDK-activating kinase (CAK) in budding yeast and is required for activation of Cdc28p for cell cycle progression from G2 to M phase. Here we describe the isolation of a mutant allele of CAK1 in a synthetic lethal screen with the Sit4 protein phosphatase. Analysis of several different cak1 mutants shows that although the G2 to M transition appears most sensitive to loss of Cak1p function, Cak1p is also required for activation of Cdc28p for progression from G1 into S phase. Further characterization of these mutants suggests that, unlike the CAK identified from higher eukaryotes, Cak1p of budding yeast may not play a role in general transcription. Finally, although Cak1 protein levels and in vitro protein kinase activity do not fluctuate during the cell cycle, at least a fraction of Cak1p associates with higher molecular weight proteins, which may be important for its in vivo function.


1991 ◽  
Vol 2 (11) ◽  
pp. 861-874 ◽  
Author(s):  
R M Tombes ◽  
J G Peloquin ◽  
G G Borisy

Isolated mammalian (Chinese hamster ovary [CHO]) metaphase spindles were found to be enriched in a histone H1 kinase whose activity was mitotic-cycle dependent. Two substrates for the kinase were identified as MAP1B and MAP4. Partially purified spindle kinase retained activity for the spindle microtubule-associated proteins (MAPs) as well as brain and other tissue culture MAPs; on phosphorylation, spindle MAPs exhibited increased immunoreactivity with MPM-2, a monoclonal antibody specific for a subset of mitotic phosphoproteins. Immunofluorescence using an anti-thiophosphoprotein antibody localized in vitro phosphorylated spindle proteins to microtubule fibers, centrosomes, kinetochores, and midbodies. The fractionated spindle kinase was reactive with anti-human p34cdc2 antibodies and with an anti-human cyclin B but not an anti-human cyclin A antibody. We conclude that spindle MAPs undergo mitotic cycle-dependent phosphorylations in vivo and associate with a kinase that remains active on spindle isolation and may be related to p34cdc2.


Author(s):  
Jason R. Swedlow ◽  
Neil Osheroff ◽  
Tim Karr ◽  
John W. Sedat ◽  
David A. Agard

DNA topoisomerase II is an ATP-dependent double-stranded DNA strand-passing enzyme that is necessary for full condensation of chromosomes and for complete segregation of sister chromatids at mitosis in vivo and in vitro. Biochemical characterization of chromosomes or nuclei after extraction with high-salt or detergents and DNAse treatment showed that topoisomerase II was a major component of this remnant, termed the chromosome scaffold. The scaffold has been hypothesized to be the structural backbone of the chromosome, so the localization of topoisomerase II to die scaffold suggested that the enzyme might play a structural role in the chromosome. However, topoisomerase II has not been studied in nuclei or chromosomes in vivo. We have monitored the chromosomal distribution of topoisomerase II in vivo during mitosis in the Drosophila embryo. This embryo forms a multi-nucleated syncytial blastoderm early in its developmental cycle. During this time, the embryonic nuclei synchronously progress through 13 mitotic cycles, so this is an ideal system to follow nuclear and chromosomal dynamics.


1994 ◽  
Vol 14 (5) ◽  
pp. 3197-3207
Author(s):  
P R Caron ◽  
P Watt ◽  
J C Wang

A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


2020 ◽  
Vol 52 (2) ◽  
pp. 168-179 ◽  
Author(s):  
Huilin Gong ◽  
Shan Gao ◽  
Chenghuan Yu ◽  
Meihe Li ◽  
Ping Liu ◽  
...  

Abstract Y-box binding protein 1 (YB-1) is manifested as its involvement in cell proliferation and differentiation and malignant cell transformation. Overexpression of YB-1 is associated with glioma progression and patient survival. The aim of this study is to investigate the influence of YB-1 knockdown on glioma cell progression and reveal the mechanisms of YB-1 knockdown on glioma cell growth, migration, and apoptosis. It was found that the knockdown of YB-1 decreased the mRNA and protein levels of YB-1 in U251 glioma cells. The knockdown of YB-1 significantly inhibited cell proliferation, colony formation, and migration in vitro and tumor growth in vivo. Proteome and phosphoproteome data revealed that YB-1 is involved in glioma progression through regulating the expression and phosphorylation of major proteins involved in cell cycle, adhesion, and apoptosis. The main regulated proteins included CCNB1, CCNDBP1, CDK2, CDK3, ADGRG1, CDH-2, MMP14, AIFM1, HO-1, and BAX. Furthermore, it was also found that YB-1 knockdown is associated with the hypo-phosphorylation of ErbB, mTOR, HIF-1, cGMP-PKG, and insulin signaling pathways, and proteoglycans in cancer. Our findings indicated that YB-1 plays a key role in glioma progression in multiple ways, including regulating the expression and phosphorylation of major proteins associated with cell cycle, adhesion, and apoptosis.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Aveek Samanta ◽  
Tilak Raj Maity ◽  
Sudip Das ◽  
Animesh Kumar Datta ◽  
Siraj Datta

Abstract Background Etoposide is one of the most potential anti-cancerous drugs that targets topoisomerase II (topoII) and inhibits its activity by ligation with the DNA molecule. Results In silico study confirmed that the etoposide-binding sites of topoII are conserved among the plants and human. The efficacy of the drug on plant system was initially assessed using germinated grass pea (Lathyrus sativus L.) seedlings (in vivo) in relation to radicle length and mitotic index. The callus system (in vitro) was also used to elucidate the effect of etoposide on callus growth kinetics. Furthermore, it was observed that etoposide able to inhibit the division of polyploid cells induced by colchicine treatment (0.5%, 8 h). To determine the molecular interaction, topoII was isolated from young grass pea leaves using polyethylene glycol fractionation and ammonium sulphate precipitation followed by column chromatography on CM-Sephadex (C-25). The plasmid linearization assays by isolated plant topoII in the presence of etoposide significantly revealed the functional similarity of plants and human topoII. Results indicated that the effect of etoposide on plant topoII is significant. Conclusions This study may pave the way to develop a plant-based assay system for screening the topoisomerase targeted anti-cancerous drugs, as it is convenient and cost-effective.


2008 ◽  
Vol 409 (3) ◽  
pp. 651-656 ◽  
Author(s):  
Francesca Di Felice ◽  
Francesco Chiani ◽  
Giorgio Camilloni

DNA topoisomerase I together with the other cellular DNA topoisomerases releases the torsional stress from DNA caused by processes such as replication, transcription and recombination. Despite the well-defined knowledge of its mechanism of action, DNA topoisomerase I in vivo activity has been only partially characterized. In fact the basic question concerning the capability of the enzyme to cleave and rejoin DNA wrapped around a histone octamer remains still unanswered. By studying both in vivo and in vitro the cleavage activity of DNA topoisomerase I in the presence of camptothecin on a repeated trinucleotide sequence, (TTA)35, lying in chromosome XIII of Saccharomyces cerevisiae, we can conclude that nucleosomes represent a physical barrier for the enzyme activity.


2016 ◽  
Vol 44 (03) ◽  
pp. 637-661 ◽  
Author(s):  
Yin-Wen Shiue ◽  
Chi-Cheng Lu ◽  
Yu-Ping Hsiao ◽  
Ching-Lung Liao ◽  
Jing-Pin Lin ◽  
...  

Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a xenotransplantation model. Therefore, casticin might be a potential therapeutic agent for the treatment of skin cancer in the future.


Sign in / Sign up

Export Citation Format

Share Document