scholarly journals Gene expression of GLUT3 glucose transporter regulated by glucose in vivo in mouse brain and in vitro in neuronal cell cultures from rat embryos

1994 ◽  
Vol 300 (1) ◽  
pp. 125-131 ◽  
Author(s):  
S Nagamatsu ◽  
H Sawa ◽  
N Inoue ◽  
Y Nakamichi ◽  
H Takeshima ◽  
...  

This study was designed to determine whether glucose regulates the gene expression of glucose transporter GLUT3 in neurons. We examined the regulation of GLUT3 mRNA by glucose in vivo in mouse brain and in vitro by using neuronal cultures from rat embryos. Hypoglycaemia (< 30 mg/dl), produced by 72 h of starvation, increased GLUT3 mRNA in mouse brain by 2-fold. Hybridization studies in situ demonstrated that hypoglycaemia-induced increases in GLUT3 mRNA expression were observed selectively in brain regions including the hippocampus, dentate gyrus, cerebral cortex and piriform cortex, but not the cerebellum. Primary neuronal cultures from rat embryos deprived of glucose for 48 h also showed an increase (4-fold over control) in GLUT3 mRNA, indicating that glucose can directly regulate expression of GLUT3 mRNA. In contrast with hypoglycaemia, hyperglycaemia produced by streptozotocin did not alter the expression of GLUT3 mRNA. We also confirmed previous findings that hypoglycaemia increases GLUT1 mRNA expression in brain. The increase in GLUT1 expression was probably limited to the blood-brain barrier in vivo, since GLUT1 mRNA could not be detected in neurons of the mouse cerebrum. Thus we conclude that up-regulation of neuronal GLUT3 in response to glucose starvation represents a protective mechanism against energy depletion in neurons.

2005 ◽  
Vol 17 (8) ◽  
pp. 775 ◽  
Author(s):  
Hiemke M. Knijn ◽  
Christine Wrenzycki ◽  
Peter J. M. Hendriksen ◽  
Peter L. A. M. Vos ◽  
Elly C. Zeinstra ◽  
...  

Bovine blastocysts produced in vitro differ substantially from their in vivo-derived counterparts with regard to glucose metabolism, level of apoptosis and mRNA expression patterns. Maternal embryonic genomic transition is a critical period in which these changes could be induced. The goals of the present study were twofold: (1) to identify the critical period of culture during which the differences in expression of gene transcripts involved in glucose metabolism are induced; and (2) to identify gene transcripts involved in apoptosis that are differentially expressed in in vitro- and in vivo-produced blastocysts. Relative abundances of transcripts for the glucose transporters Glut-1, Glut-3, Glut-4 and Glut-8, and transcripts involved in the apoptotic cascade, including BAX, BCL-XL, XIAP and HSP 70.1, were analysed by a semiquantitative reverse transcription–polymerase chain reaction assay in single blastocysts produced in vitro or in vivo for specific time intervals, that is, before or after maternal embryonic transition. Whether the culture environment was in vitro or in vivo affected the expression of glucose transporter transcripts Glut-3, Glut-4 and Glut-8. However, the critical period during culture responsible for these changes, before or after maternal embryonic transition, could not be determined. With the exception of XIAP, no effects of culture system on the mRNA expression patterns of BAX, BCL-XL and HSP 70.1 could be observed. These data show that expression of XIAP transcripts in expanded blastocysts is affected by in vitro culture. These findings add to the list of bovine genes aberrantly expressed in culture conditions, but do not support the hypothesis that maternal embryonic transition is critical in inducing the aberrations in gene expression patterns studied here.


1996 ◽  
Vol 314 (3) ◽  
pp. 903-909 ◽  
Author(s):  
Franck RENCUREL ◽  
Gérard WAEBER ◽  
Bénédicte ANTOINE ◽  
Francis ROCCHICCIOLI ◽  
Paulette MAULARD ◽  
...  

Previous studies have shown that glucose increases the glucose transporter (GLUT2) mRNA expression in the liver in vivo and in vitro. Here we report an analysis of the effects of glucose metabolism on GLUT2 gene expression. GLUT2 mRNA accumulation by glucose was not due to stabilization of its transcript but rather was a direct effect on gene transcription. A proximal fragment of the 5´ regulatory region of the mouse GLUT2 gene linked to a reporter gene was transiently transfected into liver GLUT2-expressing cells. Glucose stimulated reporter gene expression in these cells, suggesting that glucose-responsive elements were included within the proximal region of the promoter. A dose-dependent effect of glucose on GLUT2 expression was observed over 10 mM glucose irrespective of the hexokinase isozyme (glucokinase Km 16 mM; hexokinase I Km 0.01 mM) present in the cell type used. This suggests that the correlation between extracellular glucose and GLUT2 mRNA concentrations is simply a reflection of an activation of glucose metabolism. The mediators and the mechanism responsible for this response remain to be determined. In conclusion, glucose metabolism is required for the proper induction of the GLUT2 gene in the liver and this effect is transcriptionally regulated.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 587 ◽  
Author(s):  
Ina Puscas ◽  
Florian Bernard-Patrzynski ◽  
Martin Jutras ◽  
Marc-André Lécuyer ◽  
Lyne Bourbonnière ◽  
...  

Since most preclinical drug permeability assays across the blood-brain barrier (BBB) are still evaluated in rodents, we compared an in vitro mouse primary endothelial cell model to the mouse b.End3 and the acellular parallel artificial membrane permeability assay (PAMPA) models for drug screening purposes. The mRNA expression of key feature membrane proteins of primary and bEnd.3 mouse brain endothelial cells were compared. Transwell® monolayer models were further characterized in terms of tightness and integrity. The in vitro in vivo correlation (IVIVC) was obtained by the correlation of the in vitro permeability data with log BB values obtained in mice for seven drugs. The mouse primary model showed higher monolayer integrity and levels of mRNA expression of BBB tight junction (TJ) proteins and membrane transporters (MBRT), especially for the efflux transporter Pgp. The IVIVC and drug ranking underlined the superiority of the primary model (r2 = 0.765) when compared to the PAMPA-BBB (r2 = 0.391) and bEnd.3 cell line (r2 = 0.019) models. The primary monolayer mouse model came out as a simple and reliable candidate for the prediction of drug permeability across the BBB. This model encompasses a rapid set-up, a fair reproduction of BBB tissue characteristics, and an accurate drug screening.


1999 ◽  
Vol 160 (3) ◽  
pp. 443-452 ◽  
Author(s):  
K Ogura ◽  
M Sakata ◽  
M Yamaguchi ◽  
H Kurachi ◽  
Y Murata

Facilitative glucose transporter-1 (GLUT1) is expressed abundantly and has an important role in glucose transfer in placentas. However, little is known about the regulation of GLUT1 expression in placental cells. We studied the changes in placental GLUT1 levels in relation to changes in glucose concentration in vitro and in vivo. In in vitro experiments, dispersed mouse placental cells were incubated under control (5.5 mM) and moderately high (22 mM) glucose concentrations, and 2-deoxyglucose uptake into cells was studied on days 1-5 of culture. After 4 days of incubation under both conditions, GLUT1 mRNA and proten levels were examined by Northern and immunoblot analyses. Treatment of cells with 22 mM glucose resulted in a significant decrease in 2-deoxyglucose uptake compared with control, from day 2 to day 5 of culture. Moreover, GLUT1 mRNA and protein levels on day 4 of culture were significantly reduced in cells incubated with 22 mM glucose compared with control. Next, we rendered mice diabetic by administering 200 micrograms/g body weight streptozotocin (STZ) on day 8 of pregnancy. Animals were killed on day 12 of pregnancy and placental tissues were obtained. [3H]Cytochalasin B binding study was carried out to assess total GLUTs, and GLUT1 mRNA and protein were measured as above. [3H]Cytochalasin B binding sites in placentas from STZ-treated mice were significantly less than those in control mice. Northern and immunoblot analyses revealed a significant decrease in GLUT1 mRNA and protein levels in diabetic mice compared with the controls. These findings suggest that the glucose concentration may regulate the expression of placental GLUT1.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 159
Author(s):  
Vladimir Khavinson ◽  
Natalia Linkova ◽  
Ekaterina Kozhevnikova ◽  
Svetlana Trofimova

The EDR peptide (Glu-Asp-Arg) has been previously established to possess neuroprotective properties. It activates gene expression and synthesis of proteins, involved in maintaining the neuronal functional activity, and reduces the intensity of their apoptosis in in vitro and in vivo studies. The EDR peptide interferes with the elimination of dendritic spines in neuronal cultures obtained from mice with Alzheimer’s (AD) and Huntington’s diseases. The tripeptide promotes the activation of the antioxidant enzyme synthesis in the culture of cerebellum neurons in rats. The EDR peptide normalizes behavioral responses in animal studies and improves memory issues in elderly patients. The purpose of this review is to analyze the molecular and genetics aspects of the EDR peptide effect on gene expression and synthesis of proteins involved in the pathogenesis of AD. The EDR peptide is assumed to enter cells and bind to histone proteins and/or ribonucleic acids. Thus, the EDR peptide can change the activity of the MAPK/ERK signaling pathway, the synthesis of proapoptotic proteins (caspase-3, p53), proteins of the antioxidant system (SOD2, GPX1), transcription factors PPARA, PPARG, serotonin, calmodulin. The abovementioned signaling pathway and proteins are the components of pathogenesis in AD. The EDR peptide can be AD.


Zygote ◽  
2009 ◽  
Vol 17 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Bao Ying Yin ◽  
Yong Zhang ◽  
Jian Hong Sun ◽  
Ji Xia Li ◽  
Ye Fei Ma

SummaryTo evaluate gene expression of Connexin37 (Cx37) in oocytes from in vitro follicles at different stages, mouse preantral follicles were isolated and cultured for 12 days in vitro. Compared with in vitro follicles, follicles grown in vivo were collected at day 14 (d14), d16, d18, d20, d22 and d24 with the same stages for gene expression of Cx37 in oocytes. Our results showed that Cx37 mRNA increased along with follicular development, reached the highest level at the onset of antrum cavity formation and decreased after antrum formation in both in vivo and in vitro mouse oocytes. However, Cx37 mRNA was significant higher (p < 0.01) in in vitro cultured oocytes than in vivo oocytes. Moreover, significantly higher levels of Cx37 mRNA were found in oocytes from in vitro disrupted follicles (p < 0.01) and non-grown follicles (p < 0.05) than those from normal follicles with a similar size. These data determine temporal gene expression of Cx37 in oocytes from follicules at different stages and indicate that the gene expression level of Cx37 in oocytes could be evaluated as a criterion to the regulatory mechanism of Cx37 in an in vitro model.


2017 ◽  
Vol 126 (04) ◽  
pp. 255-262 ◽  
Author(s):  
Katarína Chalásová ◽  
Lukáš Pácal ◽  
Anna Pleskačová ◽  
Lucia Knopfová ◽  
Jitka Řehořová ◽  
...  

Abstract Aim Pentose phosphate pathway (PPP) with key enzyme transketolase (TKT), represents a potentially ‘protective’ mechanism in hyperglycaemia. Diabetic kidney disease (DKD), a common complication of both type 1 and type 2 diabetes associated with significant morbidity and mortality, represents the most common cause of chronic kidney disease (CKD). We hypothesized that protective PPP action in diabetes and eventually even more severely in concomitant DKD might be compromised by limited intracellular availability of an active TKT cofactor thiamine diphosphate (TDP). Methods Effect of hyperglycaemia on gene expression and protein levels of key PPP loci was studied in vitro using human cell lines relevant to diabetes (HUVEC and HRGEC) and (together with measurement of TKT activity, plasma thiamine and erythrocyte TDP concentration) in vivo in diabetic vs. non-diabetic subjects with comparable renal function (n=83 in total). Results Hyperglycaemia significantly decreased protein levels of RFC-1, THTR1, THTR2 and TKT (P<0.05) in vitro. Analysis of blood samples from CKD patients with and without diabetes and from controls did not reveal any difference in gene expression and protein levels of thiamine transporters while TKT activity and TDP in erythrocytes gradually increased with decreasing kidney function being highest in patients with CKD3-4 of both diabetic and non-diabetic aetiology. Hyperglycaemia and uremic serum mimicking CKD in diabetes did not affect TKT activity in vitro (P<0.05). Conclusion Both in vitro and human experiments showed decrease or unchanged expression, respectively, of thiamine transporters induced by hyperglycaemia while TKT activity in parallel with intracellular TDP was increased in CKD patients with or without diabetes. Therefore, lack of adaptive increase of thiamine transmembrane transport allowing further increase of TKT activity might contribute to compromised PPP function in diabetes and CKD and to the development of glycotoxic injury.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 746-746
Author(s):  
Anne M. Noonan ◽  
Jacob Yount ◽  
Jason David ◽  
Mindy Hoang ◽  
Colin W. Stets ◽  
...  

746 Background: Pelareorep is a proprietary formulation of live, replication-competent, naturally occurring Reovirus Type 3 Dearing strain. A randomized phase II trial of pelareorep in combination with carboplatin and paclitaxel in first-line treatment of metastatic PDAC (NCT01280058) was performed. Although pelareorep did not improve the primary endpoint of progression-free survival compared to carboplatin and paclitaxel alone, impressive durable responses were seen in the pelareorep arm in some patients (pts). Further, prior studies have noted the immunomodulatory carcinoembryonic antigen-related cell adhesion molecule (CEACAM6/CD66c) as a receptor for specific viral subtypes. We thus speculated that altered CEACAM6 levels may be predictive for pelareorep sensitivity. Methods: Pre-treatment tissue biopsies were collected prior enrolment for all 73 pts on study. Evaluable pts with transcriptomic data was available for only 31 pts. RNA was purified from FFPE tissue and gene expression analysis was performed using SensationPlus FFPE Amplification and WT labelling kit and the Human Transcriptome Array 2.0. CEACAM6 protein expression was determined by immunohistochemistry. Differential gene expression and survival analysis using were performed in R/Bioconductor. Appropriate corrections for multiplicity were performed. Results: When comparing extraordinary responders in the pelareorep treated arm to those with poor outcomes, low levels of CEACAM6 mRNA expression were associated with prolonged PFS in pelareorep-treated pts (adjusted p = 0.05). This effect was not seen in non-pelareorep treated pts. The luminal, but not the cytoplasmic immunohistochemistry score, was highly correlated with mRNA expression levels of CEACAM6, p = 0.001. Modulation of CEACAM6 in vitro and in vivo are underway. Conclusions: CEACAM6 may be a candidate biomarker of sensitivity to pelareorep and, in theory, could improve viral trafficking of this compound in tumor cells. Clinical trial information: NCT01280058 . [Table: see text]


Blood ◽  
2005 ◽  
Vol 105 (12) ◽  
pp. 4613-4619 ◽  
Author(s):  
Falk Martin ◽  
Tobias Linden ◽  
Dörthe M. Katschinski ◽  
Felix Oehme ◽  
Ingo Flamme ◽  
...  

Abstract Cellular oxygen partial pressure is sensed by a family of prolyl-4-hydroxylase domain (PHD) enzymes that modify hypoxia-inducible factor (HIF)α subunits. Upon hydroxylation under normoxic conditions, HIFα is bound by the von Hippel-Lindau tumor suppressor protein and targeted for proteasomal destruction. Since PHD activity is dependent on oxygen and ferrous iron, HIF-1 mediates not only oxygen- but also iron-regulated transcriptional gene expression. Here we show that copper (CuCl2) stabilizes nuclear HIF-1α under normoxic conditions, resulting in hypoxia-response element (HRE)-dependent reporter gene expression. In in vitro hydroxylation assays CuCl2 inhibited prolyl-4-hydroxylation independently of the iron concentration. Ceruloplasmin, the main copper transport protein in the plasma and a known HIF-1 target in vitro, was also induced in vivo in the liver of hypoxic mice. Both hypoxia and CuCl2 increased ceruloplasmin (as well as vascular endothelial growth factor [VEGF] and glucose transporter 1 [Glut-1]) mRNA levels in hepatoma cells, which was due to transcriptional induction of the ceruloplasmin gene (CP) promoter. In conclusion, our data suggest that PHD/HIF/HRE-dependent gene regulation can serve as a sensory system not only for oxygen and iron but also for copper metabolism, regulating the oxygen-, iron- and copper-binding transport proteins hemoglobin, transferrin, and ceruloplasmin, respectively. (Blood. 2005;105:4613-4619)


Sign in / Sign up

Export Citation Format

Share Document