scholarly journals High concentration of glucose decreases glucose transporter-1 expression in mouse placenta in vitro and in vivo

1999 ◽  
Vol 160 (3) ◽  
pp. 443-452 ◽  
Author(s):  
K Ogura ◽  
M Sakata ◽  
M Yamaguchi ◽  
H Kurachi ◽  
Y Murata

Facilitative glucose transporter-1 (GLUT1) is expressed abundantly and has an important role in glucose transfer in placentas. However, little is known about the regulation of GLUT1 expression in placental cells. We studied the changes in placental GLUT1 levels in relation to changes in glucose concentration in vitro and in vivo. In in vitro experiments, dispersed mouse placental cells were incubated under control (5.5 mM) and moderately high (22 mM) glucose concentrations, and 2-deoxyglucose uptake into cells was studied on days 1-5 of culture. After 4 days of incubation under both conditions, GLUT1 mRNA and proten levels were examined by Northern and immunoblot analyses. Treatment of cells with 22 mM glucose resulted in a significant decrease in 2-deoxyglucose uptake compared with control, from day 2 to day 5 of culture. Moreover, GLUT1 mRNA and protein levels on day 4 of culture were significantly reduced in cells incubated with 22 mM glucose compared with control. Next, we rendered mice diabetic by administering 200 micrograms/g body weight streptozotocin (STZ) on day 8 of pregnancy. Animals were killed on day 12 of pregnancy and placental tissues were obtained. [3H]Cytochalasin B binding study was carried out to assess total GLUTs, and GLUT1 mRNA and protein were measured as above. [3H]Cytochalasin B binding sites in placentas from STZ-treated mice were significantly less than those in control mice. Northern and immunoblot analyses revealed a significant decrease in GLUT1 mRNA and protein levels in diabetic mice compared with the controls. These findings suggest that the glucose concentration may regulate the expression of placental GLUT1.


1996 ◽  
Vol 270 (2) ◽  
pp. F245-F253 ◽  
Author(s):  
J. H. Dominguez ◽  
C. C. Hale ◽  
M. Qulali

Gentamicin nephrotoxicity may arise in part from alterations in the expression of genes critical for renal proximal tubule metabolism. We tested the hypothesis that gentamicin suppressed the gene expression of the Na+/Ca2+ exchanger (NaCaX), glucose transporter 1 (GLUT1) and alpha 1-subunit of Na(+)-K(+)-ATPase (alpha 1-NKA) in renal tubules. The products of these genes mediate Na(+)-dependent Ca2+ efflux, glucose efflux and influx, and ATP-dependent Na+ efflux across tubular basolateral membranes, respectively. After 10 days of gentamicin intoxication (40 mg/kg ip, twice daily), levels of mRNAs encoding NaCaX and the cognate protein declined. GLUT1 mRNA levels increased, although GLUT1 protein levels were also reduced. Moreover, whereas alpha 1-NKA mRNA levels remained unchanged, alpha 1-NKA protein levels were also reduced. We suggest that the higher GLUT1 mRNA level is part of the stress response to tubular injury. However, regardless of the mRNA level, the most consistent effect of gentamicin was reduction of specific protein levels. We propose that failure to translate high levels of mRNA into proportionally high levels of protein, as in the case of GLUT1, may attenuate the expression of stress response gene products, and thus diminish the possibility of recovery in gentamicin intoxication.



2015 ◽  
Vol 18 ◽  
pp. 117-128 ◽  
Author(s):  
Christine Schulze ◽  
Adina Bangert ◽  
Bettina Schwanck ◽  
Henning Vollert ◽  
Wolfgang Blaschek ◽  
...  


2021 ◽  
Vol 8 ◽  
Author(s):  
Eric Chang-Yi Lin ◽  
Shuoh-Wen Chen ◽  
Luen-Kui Chen ◽  
Ting-An Lin ◽  
Yu-Xuan Wu ◽  
...  

Glucosamine (GlcN) is the most widely consumed dietary supplement and exhibits anti-inflammatory effects. However, the influence of GlcN on immune cell generation and function is largely unclear. In this study, GlcN was delivered into mice to examine its biological function in hematopoiesis. We found that GlcN promoted the production of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs), both in vivo and in vitro. Additionally, GlcN upregulated the expression of glucose transporter 1 in hematopoietic stem and progenitor cells (HSPCs), influenced HSPC functions, and downregulated key genes involved in myelopoiesis. Furthermore, GlcN increased the expression of arginase 1 and inducible nitric oxide synthase to produce high levels of reactive oxygen species, which was regulated by the STAT3 and ERK1/2 pathways, to increase the immunosuppressive ability of MDSCs. We revealed a novel role for GlcN in myelopoiesis and MDSC activity involving a potential link between GlcN and immune system, as well as the new therapeutic benefit.



2022 ◽  
Author(s):  
Steinunn Sara Helgudóttir ◽  
Kasper Bendix Johnsen ◽  
Lisa Juul Routhe ◽  
Charlotte L.M. Rasmussen ◽  
Azra Karamehmedovic ◽  
...  

Abstract BackgroundThe objectives of the present study were to investigate whether the expression of transferrin receptor 1 (TfR1), glucose transporter 1 (Glut1), or Cluster of Differentiation 98 Heavy Chain (CD98hc) is epigenetically regulated in brain capillary endothelial cells (BCECs) denoting the blood-brain barrier (BBB).MethodsThe expression of these targets was investigated both in vitro and in vivo following treatment with the histone deacetylase inhibitor (HDACi) valproic acid (VPA). Mice were injected intraperitoneally with VPA followed by analysis of isolated brain capillaries, and the capillary depleted brain samples. Brain tissue, isolated brain capillaries, and cultured primary endothelial cells were analyzed by RT-qPCR, immunolabeling and ELISA for expression of TfR1, Glut1 and CD98hc. We also studied the vascular targeting in VPA-treated mice injected with monoclonal anti-transferrin receptor (Ri7) conjugated with 1.4 nm gold nanoparticles. ResultsValidating the effects of VPA on gene transcription in BCECs, transcriptomic analysis identified 24,371 expressed genes, of which 305 were differentially expressed with 192 upregulated and 113 downregulated genes. In vitro using BCECs co-cultured with glial cells, the mRNA expression of Tfrc was significantly higher after VPA treatment for 6 h with its expression returning to baseline after 24 h. Conversely, the mRNA expression of Glut1 and Cd98hc was unaffected by VPA treatment. In vivo, the TfR1 protein expression in brain capillaries increased significantly after treatment with both 100 mg/kg and 400 mg/kg VPA. Conversely, VPA treatment did not increase GLUT1 or CD98hc. Using ICP-MS-based quantification, the brain uptake of nanogold conjugated anti-TfR1 antibodies was non-significant in spite of increased expression of TfR1. ConclusionsWe report that VPA treatment upregulates TfR1 at the BBB both in vivo and in vitro in isolated primary endothelial cells. In contrast, VPA treatment does not influence the expression of GLUT1 and CD98hc. The increase in the overall TfR1 protein expression however does not increase transport of TfR-targeted monoclonal antibody and indicates that targeted delivery using the transferrin receptor should aim for increased mobilization of already available transferrin receptor molecules to improve trafficking through the BBB.



2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ivika Jakson ◽  
Dorina Ujvari ◽  
Sebastian Brusell Gidlöf ◽  
Angelica Lindén Hirschberg

Abstract Background Solute carrier family 2 member 1 (SLC2A1; previously known as glucose transporter 1), is the most abundant glucose transporter in human endometrium and is up-regulated during decidualization, whereas high insulin may have a negative impact on this process. The present study aimed to investigate the effect of insulin on the expression of SLC2A1 and glucose uptake in decidualizing human endometrial stromal cells. Methods We induced in vitro decidualization of endometrial stromal cells obtained from regularly menstruating healthy non-obese women. The cells were treated with increasing concentrations of insulin, and the involvement of the transcription factor forkhead box O1 (FOXO1) was evaluated using a FOXO1 inhibitor. SLC2A1 mRNA levels were measured by Real-Time PCR and protein levels were evaluated by immunocytochemistry. Glucose uptake was estimated by an assay quantifying the cellular uptake of radioactive glucose. One-way ANOVA, Dunnett’s multiple comparisons test and paired t-test were used to determine the statistical significance of the results. Results We found that insulin dose-dependently decreased SLC2A1 mRNA levels and decreased protein levels of SLC2A1 in decidualizing human endometrial stromal cells. Transcriptional inactivation of FOXO1 seems to explain at least partly the down-regulation of SLC2A1 by insulin. Glucose uptake increased upon decidualization, whereas insulin treatment resulted in a slight inhibition of the glucose uptake, although not significant for all insulin concentrations. Conclusions These results indicate an impairment of decidualization by high concentrations of insulin. Future studies will determine the clinical significance of our results for endometrial function and decidualization in women with insulin resistance and hyperinsulinemia.



1994 ◽  
Vol 300 (1) ◽  
pp. 125-131 ◽  
Author(s):  
S Nagamatsu ◽  
H Sawa ◽  
N Inoue ◽  
Y Nakamichi ◽  
H Takeshima ◽  
...  

This study was designed to determine whether glucose regulates the gene expression of glucose transporter GLUT3 in neurons. We examined the regulation of GLUT3 mRNA by glucose in vivo in mouse brain and in vitro by using neuronal cultures from rat embryos. Hypoglycaemia (< 30 mg/dl), produced by 72 h of starvation, increased GLUT3 mRNA in mouse brain by 2-fold. Hybridization studies in situ demonstrated that hypoglycaemia-induced increases in GLUT3 mRNA expression were observed selectively in brain regions including the hippocampus, dentate gyrus, cerebral cortex and piriform cortex, but not the cerebellum. Primary neuronal cultures from rat embryos deprived of glucose for 48 h also showed an increase (4-fold over control) in GLUT3 mRNA, indicating that glucose can directly regulate expression of GLUT3 mRNA. In contrast with hypoglycaemia, hyperglycaemia produced by streptozotocin did not alter the expression of GLUT3 mRNA. We also confirmed previous findings that hypoglycaemia increases GLUT1 mRNA expression in brain. The increase in GLUT1 expression was probably limited to the blood-brain barrier in vivo, since GLUT1 mRNA could not be detected in neurons of the mouse cerebrum. Thus we conclude that up-regulation of neuronal GLUT3 in response to glucose starvation represents a protective mechanism against energy depletion in neurons.



1999 ◽  
Vol 277 (1) ◽  
pp. F97-F104 ◽  
Author(s):  
Douglas N. Henry ◽  
Julia V. Busik ◽  
Frank C. Brosius ◽  
Charles W. Heilig

The process linking increased glucose utilization and activation of metabolic pathways leading to end-organ damage from diabetes is not known. We have previously described rat mesangial cells that were transduced to constitutively express the facilitative glucose transporter 1 (GLUT1, MCGT1 cells) or bacterial β-galactosidase (MCLacZ, control cells). Glucose transport was rate limiting for extracellular matrix production in the MCGT1 cells. In the present work, we investigated the effect of GLUT1 overexpression in mesangial cells on aldose reductase (AR), protein kinase Cα (PKCα), and native GLUT1 transcript levels, to determine whether changes in GLUT1 alone could regulate their expression in the absence of high extracellular glucose concentrations. MCGT1 cells grown in normal (8 mM) or elevated (20 mM) glucose had elevated abundance of AR, PKCα, and the native GLUT1 transcripts compared with control cells. AR protein levels, AR activity, sorbitol production, and PKCα protein content were also greater in the MCGT1 cells than in control cells grown in the same media. This is the first report of the concomitant activation of AR, PKCα, and GLUT1 genes by enhanced GLUT1 expression. We conclude that increased GLUT1 expression leads to a positive feedback of greater GLUT1 expression, increased AR expression and activity with polyol accumulation, and increased total and active PKCα protein levels, which leads to detrimental stimulation of matrix protein synthesis by diabetic mesangial cells.





2018 ◽  
Vol 9 ◽  
Author(s):  
Yu-Zhu Wang ◽  
Qing Xu ◽  
Wei Wu ◽  
Ying Liu ◽  
Ying Jiang ◽  
...  


1995 ◽  
Vol 78 (1) ◽  
pp. 46-52 ◽  
Author(s):  
X. X. Han ◽  
A. Handberg ◽  
L. N. Petersen ◽  
T. Ploug ◽  
H. Galbo

In vivo exercise and insulin may change the concentrations of GLUT-4 protein and mRNA in muscle. We studied in vitro whether adaptations in glucose transporter expression are initiated during a single prolonged period of contractions or during insulin stimulation. Rat hindquarters were perfused at 7 mM glucose for 2 h with or without insulin (> 20,000 microU/ml) while the sciatic nerve of one leg was stimulated to produce repeated tetanic contractions. During electrical stimulation, contraction force decreased 93 +/- 1% (SE; n = 26) and muscle glycogen was markedly diminished (P < 0.05). Both contractions and insulin markedly increased glucose transport and uptake (P < 0.05). At the end of contractions, glycogen was higher in the presence of than in the absence of insulin (24 +/- 4 vs. 14 +/- 3 mumol/g for the soleus and 13 +/- 2 vs. 8 +/- 1 mumol/g for the red gastrocnemius, respectively; P < 0.05). In nonstimulated muscle, glucose transporter mRNA and protein concentrations were higher in the soleus than in the white gastrocnemius (GLUT-4 mRNA 184 +/- 18 vs. 131 +/- 36 arbitrary units; GLUT-1 mRNA 173 +/- 29 vs. 114 +/- 26 arbitrary units; GLUT-4 protein 0.96 +/- 0.09 vs. 0.46 +/- 0.03 arbitrary units; GLUT-1 protein 0.41 +/- 0.08 vs. 0.19 +/- 0.05 arbitrary units, respectively; P < 0.05). These concentrations were not changed by contractions or insulin. In conclusion, GLUT-1 and GLUT-4 mRNA and protein levels are higher in slow-twitch oxidative than in fast-twitch glycolytic fibers.(ABSTRACT TRUNCATED AT 250 WORDS)



Sign in / Sign up

Export Citation Format

Share Document