scholarly journals Early signalling mechanism in colonic epithelial cell response to gastrin

1995 ◽  
Vol 311 (3) ◽  
pp. 945-950 ◽  
Author(s):  
R R Yassin ◽  
K M Little

The hormone gastrin exerts a growth-promoting effect on gastrointestinal cells. The molecular mechanisms by which colonic epithelial cells respond to gastrin are still poorly understood. In this study, we demonstrate a novel feature of the action of gastrin on normal colonic cells, namely the rapid phosphorylation on tyrosine of phospholipase C gamma 1 (PLC gamma 1). Tyrosine phosphorylation of PLC gamma 1, elicited by gastrin, was transient, concentration-dependent, and was abrogated by pretreating the colonic cells with the gastrin-receptor antagonist proglumide, the tyrosine kinase inhibitor genistein, and by removal of the tyrosine phosphatase inhibitor orthovanadate from the isolation buffer. Tyrosine phosphorylation of PLC gamma 1 correlated with the time- and concentration-dependent decrease in the mass of membrane phosphatidylinositol 4,5-bisphosphate (PIP2) and the increase in the epithelial concentration of inositol 1,4,5-trisphosphate (IP3). Likewise, the stimulated increase in IP3 was also prevented by proglumide and genistein. Gastrin induced a definite but transient increase in the intracellular concentration of free Ca2+ [Ca2+]i, and increased membrane-translocation of immunoreactive alpha- and beta-protein kinase C. The data thus indicate that gastrin elicits at least one signalling cascade, through rapid tyrosine phosphorylation of PLC gamma 1, leading to the activation of a PIP2-specific PLC pathway.

1992 ◽  
Vol 286 (2) ◽  
pp. 441-449 ◽  
Author(s):  
K M Pumiglia ◽  
L F Lau ◽  
C K Huang ◽  
S Burroughs ◽  
M B Feinstein

The protein tyrosine phosphatase (PTPase) inhibitor pervanadate (vanadyl hydroperoxide) stimulated protein tyrosine phosphorylation 29-fold more than did thrombin in intact and saponin-permeabilized platelets. Increased tyrosine phosphorylation preceded, or was coincident with, a fall in PtdIns(4,5)P2 levels, production of PtdIns(3,4)P2 and phosphatidic acid, mobilization of intracellular Ca2+, stimulation of protein kinase C-dependent protein phosphorylation, secretion of dense and alpha-granules, increased actin polymerization, shape change and aggregation which required fibrinogen and was mediated by increased surface expression of GPIIb-IIIa. The tyrosine kinase inhibitor RG 50864 totally prevented induction of tyrosine phosphorylation by pervanadate, as well as all other responses measured; in contrast, the inactive structural analogue, tyrphostin #1, had no effect. Dense-granule secretion induced by pervanadate required protein kinase C activity; however, aggregation and alpha-granule secretion were independent of protein kinase C. In saponin-permeabilized platelets pervanadate and thrombin stimulated phospholipase C activity by GTP-independent and GTP-dependent mechanisms respectively. We conclude that PTPases are important regulators of signal transduction in platelets.


2002 ◽  
Vol 283 (4) ◽  
pp. G893-G899 ◽  
Author(s):  
Monica C. Chen ◽  
Travis E. Solomon ◽  
Eduardo Perez Salazar ◽  
Robert Kui ◽  
Enrique Rozengurt ◽  
...  

Previous studies found that epidermal growth factor (EGF) decreased paracellular permeability in gastric mucosa, but the other physiological regulators and the molecular mechanisms mediating these responses remain undefined. We investigated the role of secretin and Src in regulating paracellular permeability because secretin regulates gastric chief cell function and Src mediates events involving the cytoskeletal-membrane interface, respectively. Confluent monolayers were formed from canine gastric epithelial cells in short-term culture on Transwell filter inserts. Resistance was monitored in the presence of secretin with or without specific kinase inhibitors. Tyrosine phosphorylation of Src at Tyr416 was measured with a site-specific phosphotyrosine antibody. Basolateral, but not apical, secretin at concentrations from 1 to 100 nM dose dependently increased resistance; this response was rapid and sustained over hours. PP2 (10 μM), a selective Src tyrosine kinase inhibitor, but not the inactive isomer PP3, abolished the increase in resistance by secretin but only modestly attenuated apical EGF effects. AG-1478 (100 nM), a specific EGF receptor tyrosine kinase inhibitor, attenuated the resistance increase to EGF but not secretin. Secretin, but not EGF, induced tyrosine phosphorylation of Src at Tyr416 in a dose-dependent fashion, with the maximal response observed at 1 min. PP2, but not PP3, dramatically inhibited this tyrosine phosphorylation. Secretin increases paracellular resistance in gastric mucosa through a Src-mediated pathway, while the effect of EGF is Src independent. Src appears to mediate the physiological effects of this Gs-coupled receptor in primary epithelial cells.


1995 ◽  
Vol 268 (1) ◽  
pp. C154-C161 ◽  
Author(s):  
G. Bischof ◽  
B. Illek ◽  
W. W. Reenstra ◽  
T. E. Machen

We studied a possible role of tyrosine kinases in the regulation of Ca entry into colonic epithelial cells HT-29/B6 using digital image processing of fura 2 fluorescence. Both carbachol and thapsigargin increased Ca entry to a similar extent and Ca influx was reduced by the tyrosine kinase inhibitor genistein (50 microM). Further experiments were performed in solutions containing 95 mM K to depolarize the membrane potential, and the effects of different inhibitors on influx of Ca, Mn, and Ba were compared. Genistein, but not the inactive analogue daidzein nor the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2- methylpiperazine, decreased entry of all three divalent cations by 47-59%. In high-K solutions, carbachol or thapsigargin both caused intracellular Ca to increase to a plateau of 223 +/- 19 nM. This plateau was reduced by the tyrosine kinase inhibitors genistein (to 95 +/- 8 nM), lavendustin A (to 155 +/- 17 nM), and methyl-2,5-dihydroxycinnamate (to 39 +/- 3 nM). Orthovanadate, a protein tyrosine phosphatase inhibitor, prevented the inhibitory effect of genistein. Ca pumping was unaffected by genistein. Carbachol increased tyrosine phosphorylation (immunoblots with anti-phosphotyrosine antibodies) of 110-, 75-, and 70-kDa proteins, and this phosphorylation was inhibited by genistein. We conclude that carbachol and thapsigargin increase Ca entry, and tyrosine phosphorylation of some key proteins may be important for regulating this pathway.


2010 ◽  
Vol 299 (4) ◽  
pp. C844-C853 ◽  
Author(s):  
Signe Skyum Kirkegaard ◽  
Ian Henry Lambert ◽  
Steen Gammeltoft ◽  
Else Kay Hoffmann

The swelling-activated K+ currents ( IK,vol) in Ehrlich ascites tumor cells (EATC) has been reported to be through the two-pore domain (K2p), TWIK-related acid-sensitive K+ channel 2 (TASK-2). The regulatory volume decrease (RVD), following hypotonic exposure in EATC, is rate limited by IK,vol indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel to a lower cell volume. Swelling-activated K+ efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-( t-butyl)pyrazolo[3,4- d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium, it is demonstrated that mpV(pic) increased the volume-sensitive part of the K+ efflux 1.3 times. To exclude K+ efflux via a KCl cotransporter, cellular Cl− was substituted with NO3−. Also under these conditions K+ efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved in the activation of the volume-sensitive K+ channel, whereas tyrosine phosphatases appears to be involved in inactivation of the channel. Overexpressing TASK-2 in human embryonic kidney (HEK)-293 cells increased the RVD rate and reduced the volume set point. TASK-2 has tyrosine sites, and precipitation of TASK-2 together with Western blotting and antibodies against phosphotyrosines revealed a cell swelling-induced, time-dependent tyrosine phosphorylation of the channel. Even though we found an inhibiting effect of PP2 on RVD, neither Src nor the focal adhesion kinase (FAK) seem to be involved. Inhibitors of the epidermal growth factor receptor tyrosine kinases had no effect on RVD, whereas the Janus kinase (JAK) inhibitor cucurbitacin inhibited the RVD by 40%. It is suggested that the cytokine receptor-coupled JAK/STAT pathway is upstream of the swelling-induced phosphorylation and activation of TASK-2 in EATC.


2013 ◽  
Vol 51 (2) ◽  
pp. 213-224 ◽  
Author(s):  
Heather E Bergan ◽  
Jeffrey D Kittilson ◽  
Mark A Sheridan

GH regulates several physiological processes in vertebrates, including the promotion of growth, an anabolic process, and the mobilization of stored lipids, a catabolic process. In this study, we used hepatocytes isolated from rainbow trout (Oncorhynchus mykiss) as a model to examine the mechanism of GH action on lipolysis. GH stimulated lipolysis as measured by increased glycerol release in both a time- and a concentration-related manner. The promotion of lipolysis was accompanied by GH-stimulated phosphorylation of the lipolytic enzyme hormone-sensitive lipase (HSL). GH-stimulated lipolysis was also manifested by an increased expression of the two HSL-encoding mRNAs, HSL1 and HSL2. The signaling pathways that underlie GH-stimulated lipolysis were also studied. GH resulted in the activation of phospholipase C (PLC)/protein kinase C (PKC) and the MEK/ERK pathway, whereas JAK–STAT and the PI3K–Akt pathway were deactivated. The blockade of PLC/PKC and the MEK/ERK pathway inhibited GH-stimulated lipolysis and GH-stimulated phosphorylation of HSL as well as GH-stimulated HSL mRNA expression, whereas the blockade of JAK–STAT or the PI3K–Akt pathway had no effect on the activation of lipolysis or the expression of HSL stimulated by GH. These results indicate that GH promotes lipolysis by activating HSL and by enhancing the de novo expression of HSL mRNAs via the activation of PKC and ERK. These findings also suggest molecular mechanisms for activating the lipid catabolic actions of GH while simultaneously deactivating anabolic processes such as antilipolysis and the growth-promoting actions of GH.


2005 ◽  
Vol 289 (3) ◽  
pp. C748-C756 ◽  
Author(s):  
Rachel J. Webb ◽  
Jacob D. Judah ◽  
Lee-Chiang Lo ◽  
Geraint M. H. Thomas

Serum albumin secretion from rat hepatocytes proceeds via the constitutive pathway. Although much is known about the role of protein tyrosine phosphorylation in regulated secretion, nothing is known about its function in the constitutive process. Here we show that albumin secretion is inhibited by the tyrosine kinase inhibitor genistein but relatively insensitive to subtype-selective inhibitors or treatments. Secretion is also blocked in a physiologically identical manner by the tyrosine phosphatase inhibitors pervanadate and bisperoxo(1,10-phenanthroline)-oxovanadate. Inhibition of either the kinase(s) or phosphatase(s) leads to the accumulation of albumin between the trans-Golgi and the plasma membrane, whereas the immediate precursor proalbumin builds up in a proximal compartment. The trans-Golgi marker TGN38 is rapidly dispersed under conditions that inhibit tyrosine phosphatase action, whereas the distribution of the cis-Golgi marker GM130 is insensitive to genistein or pervanadate. By using a specifically reactive biotinylation probe, we detected protein tyrosine phosphatases in highly purified rat liver Golgi membranes. These membranes also contain both endogenous tyrosine kinases and their substrates, indicating that enzymes and substrates for reversible tyrosine phosphorylation are normal membrane-resident components of this trafficking compartment. In the absence of perturbation of actin filaments and microtubules, we conclude that reversible protein tyrosine phosphorylation in the trans-Golgi network is essential for albumin secretion and propose that the constitutive secretion of albumin is in fact a regulated process.


Blood ◽  
1995 ◽  
Vol 85 (9) ◽  
pp. 2559-2569 ◽  
Author(s):  
H Kutsumi ◽  
K Kawai ◽  
RB Jr Johnston ◽  
K Rokutan

Phenylarsine oxide (PAO) specifically forms a stable ring complex with vicinal dithiols that can be reversed with 2,3-dimercaptopropanol (DMP). Pretreatment of human neutrophils with micromolar concentrations of PAO inhibited release of superoxide anion (O2-) stimulated by N- formyl-methionyl-leucyl-phenylalanine (FMLP) or phorbol 12-myristate 13-acetate (PMA); the inhibition was reversed with DMP, but not with 2-mercaptoethanol. PAO did not affect O2-release in previously stimulated cells. PAO did not affect the FMLP-induced Ca2+ response, suggesting that PAO affects a postreceptor event that does not modulate the Ca2+ transient. Treatment of isolated membrane or cytosolic fractions with PAO did not change the rates of arachidonate-stimulated O2-production in a cell-free system. Pretreatment of unstimulated neutrophils with PAO inactivated cytosolic protein kinase C (PKC); the inactivation was reversed with DMP. However, PAO did not affect PMA-induced translocation of beta-PKC protein or reduce the PKC activity translocated to the membrane. PAO had no effect on tyrosine kinase activity but inactivated phosphotyrosine phosphatase; stimulus-induced tyrosine phosphorylation of several proteins was markedly enhanced. These results suggest that vicinal dithiols play an essential role in activation of the respiratory burst oxidase. Possible sites for the activity of these essential vicinal dithiols include PKC and the regulatory balance of tyrosine phosphatase activity and tyrosine phosphorylation.


2015 ◽  
Vol 112 (31) ◽  
pp. E4264-E4271 ◽  
Author(s):  
Yoji Murata ◽  
Takenori Kotani ◽  
Yana Supriatna ◽  
Yasuaki Kitamura ◽  
Shinya Imada ◽  
...  

Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer–associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10–deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1–deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.


2014 ◽  
Vol 143 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Alex S. McKeown ◽  
Timothy W. Kraft

Photoreceptors adapt to changes in illumination by altering transduction kinetics and sensitivity, thereby extending their working range. We describe a previously unknown form of rod photoreceptor adaptation in wild-type (WT) mice that manifests as a potentiation of the light response after periods of conditioning light exposure. We characterize the stimulus conditions that evoke this graded hypersensitivity and examine the molecular mechanisms of adaptation underlying the phenomenon. After exposure to periods of saturating illumination, rods show a 10–35% increase in circulating dark current, an adaptive potentiation (AP) to light exposure. This potentiation grows as exposure to light is extended up to 3 min and decreases with longer exposures. Cells return to their initial dark-adapted sensitivity with a time constant of recovery of ∼7 s. Halving the extracellular Mg concentration prolongs the adaptation, increasing the time constant of recovery to 13.3 s, but does not affect the magnitude of potentiation. In rods lacking guanylate cyclase activating proteins 1 and 2 (GCAP−/−), AP is more than doubled compared with WT rods, and halving the extracellular Mg concentration does not affect the recovery time constant. Rods from a mouse expressing cyclic nucleotide–gated channels incapable of binding calmodulin also showed a marked increase in the amplitude of AP. Application of an insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitor (Tyrphostin AG1024) blocked AP, whereas application of an insulin receptor kinase inhibitor (HNMPA(AM)3) failed to do so. A broad-acting tyrosine phosphatase inhibitor (orthovanadate) also blocked AP. Our findings identify a unique form of adaptation in photoreceptors, so that they show transient hypersensitivity to light, and are consistent with a model in which light history, acting via the IGF-1R, can increase the sensitivity of rod photoreceptors, whereas the photocurrent overshoot is regulated by Ca-calmodulin and Ca2+/Mg2+-sensitive GCAPs.


2004 ◽  
Vol 287 (2) ◽  
pp. C558-C563 ◽  
Author(s):  
Xiaochun Jin ◽  
Nemat Morsy ◽  
John Winston ◽  
Pankaj J. Pasricha ◽  
Kennon Garrett ◽  
...  

The capsaicin receptor TRPV1 is a nonselective cation channel that is expressed in sensory neurons. In this study, we examined the role of the nonreceptor cellular tyrosine kinase c-Src kinase in the modulation of the rat TRPV1. Capsaicin-induced currents in identified colonic dorsal root ganglion neurons were blocked by the c-Src kinase inhibitor PP2 and enhanced by the tyrosine phosphatase inhibitor sodium orthovandate. PP2 also abolished currents in human embryonic kidney-293 cells transfected with rat TRPV1, whereas cotransfection of TRPV1 with v-Src resulted in fivefold increase in capsaicin-induced currents. In cells transfected with dominant-negative c-Src and TRPV1, capsaicin-induced currents were decreased by approximately fourfold. TRPV1 co-immunoprecipitated with Src kinase and was tyrosine phosphorylated. These studies demonstrate that TRPV1 is a potential target for cellular tyrosine kinase-dependent phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document