scholarly journals Hyperosmolarity stimulates prostaglandin synthesis and cyclooxygenase-2 expression in activated rat liver macrophages

1995 ◽  
Vol 312 (1) ◽  
pp. 135-143 ◽  
Author(s):  
F Zhang ◽  
U Warskulat ◽  
M Wettstein ◽  
R Schreiber ◽  
H P Henninger ◽  
...  

The effect of aniso-osmotic exposure on the level of inducible cyclooxygenase (Cox-2) and on prostanoid synthesis was studied in cultured rat liver macrophages (Kupffer cells). In lipopolysaccharide (LPS)- or phorbol 12-myristate 13-acetate-stimulated Kupffer cells, hyperosmotic (355 mosmol/l) exposure, due to addition of NaCl or impermeant sugars, markedly increased prostaglandin (PG) E2, D2 and thromboxane B2 synthesis in a time- and osmolarity-dependent manner. Increased prostanoid production was observed about 8 h after exposure to LPS in hyperosmotic medium compared to Kupffer cells treated with LPS under normotonic (305 mosmol/l) conditions. A similar stimulatory effect of hyperosmolarity on PGE2 production was also seen when arachidonate was added exogenously. Hyperosmotic stimulation of PGE2 production was accompanied by a strong induction of Cox-2 mRNA levels and an increase in immunoreactive Cox-2, whereas the levels of immunoreactive phospholipase A2 and cyclooxygenase-1 did not change significantly. Dexamethasone, indomethacin and the selective Cox-2 inhibitor, NS-398, abolished the hypertonicity-induced stimulation of PGE2 formation; dexamethasone also prevented the increase in Cox-2 mRNA and protein. The increase of immunoreactive Cox-2 lasted for about 24 h and was also blocked by actinomycin D or cycloheximide, but not by brefeldin A. Tunicamycin or treatment with endoglucosidase H reduced the molecular mass of hypertonicity-induced Cox-2 by 5 kDa. Tunicamycin treatment also suppressed the hypertonicity-induced stimulation of PGE2 production. The hyperosmolarity/LPS-induced stimulation of prostaglandin formation was partly sensitive to protein kinase C inhibition but was not accompanied by an increase in the cytosolic free Ca2+ concentration. The data suggest that osmolarity may be a critical factor in the regulation of Cox-2 expression and prostanoid production in activated rat liver macrophages.

1997 ◽  
Vol 326 (1) ◽  
pp. 289-295 ◽  
Author(s):  
Ulrich WARSKULAT ◽  
Christian WEIK ◽  
Dieter HÄUSSINGER

The role of myo-inositol as an osmolyte was studied in cultured rat liver macrophages (Kupffer cells). Hyperosmotic exposure of Kupffer cells stimulated myo-inositol uptake and led to an increase in the mRNA levels for the sodium/myo-inositol co-transporter (SMIT). Conversely, hypo-osmotic (205 m-osM) exposure diminished myo-inositol uptake when compared with normo-osmotic (305 m-osM) control incubations. The hyperosmolarity-induced SMIT mRNA increase was counteracted by added myo-inositol or betaine. In contrast with Kupffer cells, there was only a slight hyperosmotic stimulation of myo-inositol uptake in RAW 264.7 mouse macrophages, and the myo-inositol transporter (SMIT) mRNA was not detectable. Further, a slight stimulation of taurine uptake and an increase in taurine transporter (TAUT) mRNA level by hyperosmolarity was observed in RAW 264.7 cells, whereas hypo-osmolarity led to a decrease in taurine uptake and TAUT mRNA level. When Kupffer cells were preloaded with myo-inositol, hypo-osmotic exposure led to a rapid efflux of myo-inositol from the cells. Myo-inositol efflux was also stimulated by phagocytosis of latex particles; however, latex was without effect on the hyperosmolarity-induced increase of SMIT mRNA levels. The results suggest a role of myo-inositol as an osmolyte in rat Kupffer cells but not in RAW 264.7 mouse macrophages. The functional relevance of this osmolyte strategy might lie in the maintenance of cell volume homeostasis during phagocytosis in Kupffer cells; however, the interplay with the other osmolytes betaine and taurine remains to be established.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Hai Yang Yu ◽  
Kyoung-Sook Kim ◽  
Young-Choon Lee ◽  
Hyung-In Moon ◽  
Jai-Heon Lee

Oleifolioside A, a new triterpenoid compound isolated fromDendropanax morbiferaLeveille (D. morbifera), was shown in this study to have potent inhibitory effects on lipopolysaccharide (LPS-)stimulated nitric oxide (NO) and prostaglandin E2(PGE2) production in RAW 264.7 macrophages. Consistent with these findings, oleifolioside A was further shown to suppress the expression of LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxigenase-2 (COX-2) in a dose-dependent manner at both the protein and mRNA levels and to significantly inhibit the DNA-binding activity and transcriptional activity of NF-κB in response to LPS. These results were found to be associated with the inhibition of the degradation and phosphorylation of IκB-αand subsequent translocation of the NF-κB p65 subunit to the nucleus. Inhibition of NF-κB activation by oleifolioside A was also shown to be mediated through the prevention of p38 MAPK and ERK1/2 phosphorylation. Taken together, our results suggest that oleifolioside A has the potential to be a novel anti-inflammatory agent capable of targeting both the NF-κB and MAPK signaling pathways.


1996 ◽  
Vol 270 (5) ◽  
pp. E873-E881 ◽  
Author(s):  
M. S. Kansara ◽  
A. K. Mehra ◽  
J. Von Hagen ◽  
E. Kabotyansky ◽  
P. J. Smith

Acyl-CoAsynthetase (ACS) is a key gene for cellular utilization of long-chain fatty acids. We characterized its regulation by physiological concentrations of insulin that acutely regulate metabolism. Our results demonstrate that subnanomolar insulin rapidly and maximally stimulates ACS gene transcription in the absence of protein synthesis; 0.5 nM insulin produced a 2.3 +/- 0.1-fold increase in ACS mRNA levels and induced ACS gene transcription 2.4 +/- 0.3-fold. The insulin sensitivity of ACS was compared with lipoprotein lipase (LPL) and stearoyl-CoA desaturase-1 (SCD-1), which were both less sensitive to insulin. Physiological triiodothyronine (10 nm) also induced ACS mRNA 2.4 +/- 0.1-fold and gene transcription 2.8 +/- 0.3-fold and coordinately induced LPL and SCD-1 mRNA and gene transcription. Because insulin and adenosine 3',5'-cyclic monophosphate often regulate genes involved in lipid and carbohydrate metabolism in a reciprocal manner, we evaluated effects of 1-methyl-3-isobutylxanthine (MIX).ACS mRNA levels were strongly downregulated by MIX in a dose-dependent manner, and ACS gene transcription inhibited in a coordinate manner with LPL and SCD-1. These data demonstrate a uniquely sensitive pattern of stimulation of ACS gene transcription by insulin with reciprocal regulation by MIX, and they suggest a significant role for ACS as a tightly regulated “gatekeeper” gene participating in the control of adipocyte metabolism.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Shuiqiao Fu ◽  
Weina Lu ◽  
Wenqiao Yu ◽  
Jun Hu

Abstract Background: To study the protective effect of Cordyceps sinensis extract (Dong Chong Xia Cao in Chinese [DCXC]) on experimental acute lung injury (ALI) mice. Methods and results: ALI model was induced by intratracheal-instilled lipopolysaccharide (LPS, 2.4 mg/kg) in BALB/c male mice. The mice were administrated DCXC (ig, 10, 30, 60 mg/kg) in 4 and 8 h after receiving LPS. Histopathological section, wet/dry lung weight ratio and myeloperoxidase activity were detected. Bronchoalveolar lavage fluid (BALF) was collected for cell count, the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and nitric oxide (NO) in BALF was detected by ELISA, the protein and mRNA expression of nuclear factor-κB p65 (NF-κB p65), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissue was detected by Western blot and RT-PCR. The result showed that DCXC could reduce the degree of histopathological injury, wet/dry weight ratio (W/D ratio) and myeloperoxidase activity (P<0.05) with a dose-dependent manner. The increased number of total cells, neutrophils and macrophages in BALF were significantly inhibited by DCXC treatment (P<0.05). The increased levels of TNF-α, IL-1β, IL-6 and NO in BALF after LPS administration was significantly reduced by DCXC (P<0.05). In addition, the increased protein and mRNA levels of iNOS, COX-2 and NF-κB p65 DNA binding ability in LPS group were dose-dependently reduced by DCXC treatment (P<0.05). Conclusion: DCXC could play an anti-inflammatory and antioxidant effect on LPS-induced ALI through inhibiting NF-κB p65 phosphorylation, and the expression of COX-2 and iNOS in lung. The result showed that DCXC has a potential protective effect on the ALI.


2000 ◽  
Vol 48 (3) ◽  
pp. 415-421 ◽  
Author(s):  
Johannes Georg Bode ◽  
Thorsten Peters-Regehr ◽  
Ralf Kubitz ◽  
Dieter Häussinger

We studied the expression of glutamine synthetase in liver macrophages (Kupffer cells, KCs) in situ and in culture. Glutamine synthetase was detectable at the mRNA and protein level in freshly isolated and short-term-cultured rat liver macrophages. Enzyme activity and protein content were about 9% of that in liver parenchymal cells. In contrast, glutamine synthetase mRNA levels in liver macrophages apparently exceeded those in parenchymal liver cells (PCs). By use of confocal laser scanning microscopy and specific macrophage markers, immunoreactive glutamine synthetase was localized to macrophages in normal rat liver and normal human liver in situ. All liver macrophages stained positive for glutamine synthetase. In addition, macrophages in rat pancreas contained immunoreactive glutamine synthetase, whereas glutamine synthetase was not detectable at the mRNA and protein level in blood monocytes and RAW 264.7 mouse macrophages. No significant amounts of glutamine synthetase were found in isolated rat liver sinusoidal endothelial cells (SECs). The data suggest a constitutive expression of glutamine synthetase not only, as previously believed, in perivenous liver parenchymal cells but also in resident liver macrophages.


1998 ◽  
Vol 159 (3) ◽  
pp. 519-526 ◽  
Author(s):  
NL Brown ◽  
SA Alvi ◽  
MG Elder ◽  
PR Bennett ◽  
MH Sullivan

There is strong evidence for the involvement of inflammatory mediators such as interleukin (IL)-1 in the biochemical mechanisms of parturition. Therefore the effects of the IL-1 family (IL-1alpha (1 ng/ml), IL-1beta (1 ng/ml) and the IL-1 receptor antagonist (IL-1ra) (10 ng/ml)) on the regulation of prostaglandin synthesis in term human fetal membranes were investigated. It was found that, after 4 h of culture, IL-1beta increased prostaglandin E2 (PGE2) output approximately twofold. This was associated with both a significant increase in cyclo-oxygenase-2 (COX-2) mRNA levels (approximately fourfold compared with control) and translocation of cytoplasmic phospholipase A2 (cPLA2) from the cytosol to the membrane fraction. IL-1alpha was less effective than IL-1beta at stimulating PGE2 production through similar mechanisms. IL-1ra had no effect on PGE2 output. However, in combination treatments, IL-1ra did not inhibit IL-1alpha- or IL-1beta-stimulated PGE2 output, and increased PGE2 production further compared with IL-1beta alone. IL-1ra decreased IL-1beta-induced COX-2 mRNA expression by about half and significantly increased cPLA2 protein levels, as detected by immunoblotting, when used alone and together with IL-1beta. These results suggest that IL-1ra has partial agonist properties when used together with IL-1alpha and IL-1beta in fetal membranes by increasing cPLA2 protein levels, which leads to an increase in the production of prostaglandins.


Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 719-725 ◽  
Author(s):  
Nianshui Jing ◽  
Xinnan Li

AbstractMicroglia plays a complex role in neuroinflammation, which has been implicated in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. This study aims to explore the effect and mechanism of Dihydromyricetin (DHM) on lipopolysaccharide (LPS)-induced inflammation in microglial BV-2 cells. Cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide (MTT) assay. The pro-inflammatory mediators and cytokines including interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α); inducible nitric oxide synthase (iNOS); and cyclooxygenase 2 (COX-2) were measured by enzyme-linked immunosorbent assay (ELISA) and/or quantitative real-time PCR (qRT-PCR). The expression of p-p65, p-IκBα, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) were analyzed by western blot. The present study showed that DHM treatment alleviated LPS-induced viability reduction, suppressed the mRNA levels of IL-6, IL‐1β and TNF-α, inhibited the mRNA and protein expression of iNOS and COX-2, and attenuated the activation of NF-кB and TLR4 signaling in a concentration-dependent manner. In conclusion, DHM exerts an anti-inflammatory effect on LPS-induced BV-2 microglial cells, possibly through TRL4/NF-κB signaling pathway.


2006 ◽  
Vol 290 (4) ◽  
pp. F897-F904 ◽  
Author(s):  
Lori Warford-Woolgar ◽  
Claudia Yu-Chen Peng ◽  
Jamie Shuhyta ◽  
Andrew Wakefield ◽  
Deepa Sankaran ◽  
...  

Renal prostanoids are important regulators of normal renal function and maintenance of renal homeostasis. In diseased kidneys, renal cylooxygenase (COX) expression and prostanoid formation are altered. With the use of the Han:Sprague-Dawley- cy rat, the aim of this study was to determine the relative contribution of renal COX isoforms (protein, gene expression, and activity) on renal prostanoid production [thromboxane B2 (TXB2, stable metabolite of TXA2), prostaglandin E2 (PGE2), and 6-keto-prostaglandin F1α (6-keto-PGF1α, stable metabolite of PGI2)] in normal and diseased kidneys. In diseased kidneys, COX-1-immunoreactive protein and mRNA levels were higher and COX-2 levels were lower compared with normal kidneys. In contrast, COX activities were higher in diseased compared with normal kidneys for both COX-1 [0.05 ± 0.02 vs. 0.45 ± 0.11 ng prostanoids·min−1·mg protein−1 ( P < 0.001)] and COX-2 [0.64 ± 0.10 vs. 2.32 ± 0.22 ng prostanoids·min−1·mg protein−1 ( P < 0.001)]. As the relative difference in activity was greater for COX-1, the ratio of COX-1/COX-2 was higher in diseased compared with normal kidneys, although the predominant activity was still due to the COX-2 isoform in both genotypes. Endogenous and steady-state in vitro levels of prostanoids were ∼2–10 times higher in diseased compared with normal kidneys. The differences between normal and diseased kidney prostanoids were in the order of TXB2 > 6-keto-PGF1α > PGE2, as determined by higher renal prostanoid levels and COX activity ratios of TXB2/6-keto-PGF1α, TXB2/PGE2, and 6-keto-PGF1α/PGE2. This specificity in both the COX isoform type and for the prostanoids produced has implications for normal and diseased kidneys in treatments involving selective inhibition of COX isoforms.


2006 ◽  
Vol 290 (6) ◽  
pp. G1243-G1251 ◽  
Author(s):  
Kazuhiro Nagata ◽  
Ken Wada ◽  
Atsushi Tatsuguchi ◽  
Seiji Futagami ◽  
Katya Gudis ◽  
...  

We have previously shown heregulin (HRG)-α expression in human gastric fibroblasts and its stimulation of gastric epithelial cell growth. Although cyclooxygenase (COX)-2 has also been shown to stimulate growth factor production in these cells, the interaction between COX-2 and HRG remains unknown. Conditioned media (CM) from gastric fibroblasts incubated with PGE2 or interleukin (IL)-1β, a well known COX-2 inducer, were analyzed for their effect on erbB3 tyrosine phosphorylation in MKN28 gastric epithelial cells. HRG protein expression in fibroblast lysates and CM was also examined by western blot. HRG-α and HRG-β mRNA expression in gastric fibroblasts and human gastric tissue was examined by real-time quantitative PCR. HRG and COX-2 expressions in surgical resections of human gastric ulcer tissue were examined immunohistochemically. CM from fibroblasts incubated with PGE2, or IL-1β, stimulated erbB3 phosphorylation in MKN28 cells. Preincubation of the fibroblasts with celecoxib, a selective COX-2 inhibitor, suppressed CM-induced erbB3 phosphorylation. This inhibition was reversed by exogenous PGE2. As with erbB3 phophorylation, IL-1β stimulated both HRG-α and HRG-β mRNA expression, as well as HRG release into gastric fibroblast CM. IL-1β-stimulated HRG expression and release were also inhibited by celecoxib, and exogenous PGE2 restored this inhibitory effect, suggesting the activation of an IL-1β-COX-2-PGE2 pathway that culminates in the release of HRG from fibroblasts. HRG-α and HRG-β mRNA levels were significantly higher in gastric ulcer tissue than in normal gastric mucosa. HRG immunoreactivity was found in interstitial cells of the gastric ulcer bed and coexpressed with COX-2. These results suggest that HRG might be a new member of the growth factor family involved in the COX-2-dependent ulcer repair process.


Sign in / Sign up

Export Citation Format

Share Document