scholarly journals Dihydromyricetin attenuates inflammation through TLR4/NF-kappaB pathway

Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 719-725 ◽  
Author(s):  
Nianshui Jing ◽  
Xinnan Li

AbstractMicroglia plays a complex role in neuroinflammation, which has been implicated in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. This study aims to explore the effect and mechanism of Dihydromyricetin (DHM) on lipopolysaccharide (LPS)-induced inflammation in microglial BV-2 cells. Cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide (MTT) assay. The pro-inflammatory mediators and cytokines including interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α); inducible nitric oxide synthase (iNOS); and cyclooxygenase 2 (COX-2) were measured by enzyme-linked immunosorbent assay (ELISA) and/or quantitative real-time PCR (qRT-PCR). The expression of p-p65, p-IκBα, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) were analyzed by western blot. The present study showed that DHM treatment alleviated LPS-induced viability reduction, suppressed the mRNA levels of IL-6, IL‐1β and TNF-α, inhibited the mRNA and protein expression of iNOS and COX-2, and attenuated the activation of NF-кB and TLR4 signaling in a concentration-dependent manner. In conclusion, DHM exerts an anti-inflammatory effect on LPS-induced BV-2 microglial cells, possibly through TRL4/NF-κB signaling pathway.

2016 ◽  
Vol 83 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Yu Li ◽  
Hongyan Ding ◽  
Xichun Wang ◽  
Lei Liu ◽  
Dan Huang ◽  
...  

Elevated levels of blood interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor–α (TNF–α) increase insulin resistance and result in inflammation. It is not clear whether elevated blood level of acetoacetate (ACAC) and decreased blood level of glucose, which are the predominant characteristics of clinical biochemistry in ketotic dairy cows, increase proinflammatory cytokines and subsequent inflammation. The objective of this study was to test the hypothesis that ACAC and glucose activate the NF-κB signalling pathway to regulate cytokines expression in bovine hepatocytes. Bovine hepatocytes were cultured with ACAC (0–4·8 mm) and glucose (0–5·55 mm) with or without NF-κB inhibitor PDTC for 24 h. The secretion and mRNA levels of cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). The NF-κB signalling pathway activation was evaluated by western blotting. Results showed that the secretion and expression of IL-1β, IL-6 and TNF-α increased in an ACAC dose-dependent manner. Additionally, there was an increase in the secretion and mRNA expression of these three cytokines in glucose treatment group, which increased significantly when the glucose concentrations exceed 3·33 mm. Furthermore, both ACAC and glucose upregulated NF-κB p65 protein expression and IκBα phosphorylation levels. However, these effects were reduced by PDTC. These results demonstrate that elevated levels of ACAC and glucose increase the synthesis and expression of proinflammatory factors by activating NF-κB signalling pathway in hepatocytes, which may contribute to inflammation injury in ketotic dairy cows.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


1999 ◽  
Vol 112 (18) ◽  
pp. 3147-3155
Author(s):  
N.A. Callejas ◽  
M. Casado ◽  
L. Bosca ◽  
P. Martin-Sanz

Recently isolated trophoblasts express nitric oxide synthase 2 (NOS-2) and cyclooxygenase 2 (COX-2), decreasing the levels of the corresponding mRNAs when the cells were maintained in culture. The sustained expression of COX-2 and NOS-2 in trophoblasts was dependent on the activation of nuclear factor kappaB (NF-kappaB) since proteasome inhibitors and antioxidants that abrogated NF-kappaB activity suppressed the induction of both genes. The time-dependent fall of the mRNA levels of NOS-2 and COX-2 paralleled the inhibition of NF-kappaB, determined by electrophoretic mobility shift assays, and the increase of the IkappaBalpha and IkappaBbeta inhibitory proteins. Isolated trophoblasts synthesized reactive oxygen intermediates (ROI), a process impaired after culturing the cells, and that might be involved in the NF-kappaB activation process. Moreover, treatment of recently isolated cells with ROI scavengers suppressed the expression of COX-2 and NOS-2. Challenge of trophoblasts with interleukin-1beta up-regulated the expression of both proteins, an effect that was potentiated by lipopolysaccharide. These results indicate that the physiological expression of NOS-2 and COX-2 in trophoblasts involves a sustained activation of NF-kappaB which inhibition abrogates the inducibility of both genes.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Shuiqiao Fu ◽  
Weina Lu ◽  
Wenqiao Yu ◽  
Jun Hu

Abstract Background: To study the protective effect of Cordyceps sinensis extract (Dong Chong Xia Cao in Chinese [DCXC]) on experimental acute lung injury (ALI) mice. Methods and results: ALI model was induced by intratracheal-instilled lipopolysaccharide (LPS, 2.4 mg/kg) in BALB/c male mice. The mice were administrated DCXC (ig, 10, 30, 60 mg/kg) in 4 and 8 h after receiving LPS. Histopathological section, wet/dry lung weight ratio and myeloperoxidase activity were detected. Bronchoalveolar lavage fluid (BALF) was collected for cell count, the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and nitric oxide (NO) in BALF was detected by ELISA, the protein and mRNA expression of nuclear factor-κB p65 (NF-κB p65), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissue was detected by Western blot and RT-PCR. The result showed that DCXC could reduce the degree of histopathological injury, wet/dry weight ratio (W/D ratio) and myeloperoxidase activity (P<0.05) with a dose-dependent manner. The increased number of total cells, neutrophils and macrophages in BALF were significantly inhibited by DCXC treatment (P<0.05). The increased levels of TNF-α, IL-1β, IL-6 and NO in BALF after LPS administration was significantly reduced by DCXC (P<0.05). In addition, the increased protein and mRNA levels of iNOS, COX-2 and NF-κB p65 DNA binding ability in LPS group were dose-dependently reduced by DCXC treatment (P<0.05). Conclusion: DCXC could play an anti-inflammatory and antioxidant effect on LPS-induced ALI through inhibiting NF-κB p65 phosphorylation, and the expression of COX-2 and iNOS in lung. The result showed that DCXC has a potential protective effect on the ALI.


2007 ◽  
Vol 282 (38) ◽  
pp. 27622-27632 ◽  
Author(s):  
Byeong-Churl Jang ◽  
Su-Haeng Sung ◽  
Jong-Gu Park ◽  
Jong-Wook Park ◽  
Jae Hoon Bae ◽  
...  

COX-2 and its products, including prostaglandin E2, are involved in many inflammatory processes. Glucosamine (GS) is an amino monosaccharide and has been widely used for alternative regimen of (osteo) arthritis. However, the mechanism of action of GS on COX-2 expression remains unclear. Here we describe a new action mechanism of glucosamine hydrochloride (GS-HCl) to tackle endogenous and agonistdriven COX-2 at protein level. GS-HCl (but not GS sulfate, N-acetyl GS, or galactosamine HCl) resulted in a shift in the molecular mass of COX-2 from 72–74 to 66–70 kDa and concomitant inhibition of prostaglandin E2 production in a concentration-dependent manner in interleukin (IL)-1β-treated A549 human lung epithelial cells. Remarkably, GS-HCl-mediated decrease in COX-2 molecular mass was associated with inhibition of COX-2 N-glycosylation during translation, as assessed by the effect of tunicamycin, the protein N-glycosylation inhibitor, or of cycloheximide, the translation inhibitor, on COX-2 modification. Specifically, the effect of low concentration of GS-HCl (1 mm) or of tunicamycin (0.1 μg/ml) to produce the aglycosylated COX-2 was rescued by the proteasomal inhibitor MG132 but not by the lysosomal or caspase inhibitors. However, the proteasomal inhibitors did not show an effect at 5 mm GS-HCl, which produced the aglycosylated or completely deglycosylated form of COX-2. Notably, GS-HCl (5 mm) also facilitated degradation of the higher molecular species of COX-2 in IL-1β-treated A549 cells that was retarded by MG132. GS-HCl (5 mm) was also able to decrease the molecular mass of endogenous and IL-1β- or tumor necrosis factor-α-driven COX-2 in different human cell lines, including Hep2 (bronchial) and H292 (laryngeal). However, GS-HCl did not affect COX-1 protein expression. These results demonstrate for the first time that GS-HCl inhibits COX-2 activity by preventing COX-2 co-translational N-glycosylation and by facilitating COX-2 protein turnover during translation in a proteasome-dependent manner.


1997 ◽  
Vol 16 (10) ◽  
pp. 577-588 ◽  
Author(s):  
Tiziana Dandrea ◽  
Ba Tu ◽  
Anders Blomberg ◽  
Thomas Sandström ◽  
Magnus Sköld ◽  
...  

Human alveolar macrophages (AMs) obtained from smokers and non-smokers by bronchoalveolar lavage (BAL) were subjected to various concentrations of NO2 in an inverted monolayer exposure model. Culture super natants were collected 4 h after the exposure and assayed for secreted TNF-α, IL-1β, IL-8 and MIP-1α. The steady state levels of the mRNAs for these cytokines were also analysed in the cells. The adherence of BAL cells to plastic prior to exposure to the gas elevated the steady state mRNA levels of all four cytokines tested in smoker's cells and that of TNF-α and IL-1β, but not IL-8 (MIP-1α not tested), in non-smoker's cells. Interestingly, adherent cells from non-smokers released circa 15-, 3-,1.5- and 3-fold the amounts of IL-1β, IL-8, TNF-α and MIP-1α, respectively, than smoker's cells during control incubation or exposure to air. A 20 min exposure to NO2 (5 or 20 p.p.m.) did not increase the secretion of any of the cytokines from either cell type. In contrast, NO2 caused a concentration- dependent inhibition of the secretion of all cytokines except IL-1β from smoker's cells. Additionally, NO2 greatly diminished the release of all cytokines in response to further treatment with lipopolysaccharide (LPS). In contrast, only the secretion of TNF-α from non-smoker's cells was inhibited by the gas in a concentration- dependent manner, whilst LPS-induced secretion of the cytokines was not affected by the gas. The steady state levels of the respective mRNAs for each of the cytokines were not significantly affected in smoker's cells by exposure to NO2, except for a negative, dose-dependent trend in the case of TNF-α. Nitrogen dioxide also failed to elevate the levels of the mRNAs in non-smoker's cells but, again, tended to diminish the levels, particularly of IL-1β mRNA. However, exposure to the gas inhibited LPS- induced accumulation of cytokine mRNAs in smoker's cells only. The data suggest that macrophage-derived cytokine mediators of the sepsis response may not play a role in the generation of NO2-induced inflammation in the human lung. Conversely, the gas seems to non-specifically inhibit the release and/or production of cytokines, particularly from smoker's cells, at the post-transcrip tional level, and impairs the ability of the cells to increase the transcription and release of the cytokines in response to bacterial LPS. The fact that NO2 seriously impaired the already diminished capacity of smoker's cells to release several important pro-inflammatory cytokines, both under control conditions and in response to LPS, strongly suggest that the inhalation of NO2 in cigarette smoke may contribute to impairing host defence against infection in the lung.


2020 ◽  
Vol 19 (9) ◽  
pp. 1911-1917
Author(s):  
Sung-Gyu Lee ◽  
Hyun Kang

Purpose: To investigate the antioxidant and anti-neuroinflammatory potential of Saussurea lappa Clarke (SLC-EA) extract in LPS-stimulated BV-2 microglial cells.Methods: Cell viability was measured by using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay while antioxidant activity was evaluated by using the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity. Lipopolysaccharide (LPS) was used to stimulate BV-2 microglia. Griess assay was employed to assess nitric oxide (NO) production. iNOS (inducible NO synthase) expression and TNF-α (tumor necrosis factor-alpha) cytokine production were measured by ELISA (enzyme-linked immunosorbent assay) and immuno blot analysis, respectively.Results: Pretreatment of 100 mg/ml of SLC-EA (p < 0.001) was inhibited Nitric Oxide (NO) by 1 ug/ml of LPS-treated murine BV-2 cells. The expression of iNOS and TNF-α were reduced by SLC-EA concentration dependent manner (p < 0.001 at 100 mg/ml). SLC-EA were scavenged 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals in a dose-dependent manner with an IC50 value of approximately 51.4 μg/ml.Conclusion: The results indicate that SLC-EA extract exhibits strong antioxidant properties and inhibits excessive pro-inflammatory cytokine due probably to the antioxidant phenolic compounds present in SLC-EA extract. Further work in exploring the in-depth mechanisms of SLC-EA extract in regulating inflammatory signaling pathways in treating neuroinflammatory diseases is necessary. Keywords: Saussurea lappa, Antioxidant, Neuroinflammation, Microglia, TNF-α, iNOS


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhenyu Fan ◽  
Liangliang Cai ◽  
Yage Wang ◽  
Qiuyan Zhu ◽  
Shengnan Wang ◽  
...  

Isatidis Radix, the dried root of Isatidis indigotica Fort, is a traditional heat-clearing and detoxicating herb, which has the antiviral and anti-inflammatory activity and immune regulation. It has been widely used to treat cold, fever, sore throat, mumps, and tonsillitis in clinics. A previous study demonstrated that the acidic fraction of Isatidis Radix (RIAF) had strong anti-inflammatory activity, but the mechanism of action was not well elucidated. Lipopolysaccharide- (LPS-) induced RAW264.7 cells were employed to observe the anti-inflammatory activity of RIAF. The level of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2), and interleukin-6 (IL-6) was determined by enzyme-linked immunosorbent assay kits. Western blot was performed to quantify the expression of extracellular signal-regulated kinase (ERK) 1/2, c-jun NH2-termianl kinase (JNK), p38, inducible NO synthetase (iNOS), cyclooxygenase (COX)-2, andnuclear factor-κB (NF-κB). Immunofluorescence assay and electrophoretic mobility shift assay (EMSA) were used to quantify the translocation and the binding-DNA activity of NF-κB. RIAF could inhibit the secretion of inflammatory cytokines (PGE2, IL-6, IL-1β, and NO, other than TNF-α) in a dose-dependent manner. Further investigation showed that the expression of iNOS and COX-2 induced by LPS were downregulated by treatment with RIAF. Meanwhile, data from the signal pathway exhibited that RIAF significantly suppressed the phosphorylation of ERK1/2, JNK, and p38 and reduced the translocation of NF-κB from the cytoplasm to nucleus, as well as the binding-DNA activity. The anti-inflammatory mechanism of action of RIAF was to reduce inflammation-associated gene expression (iNOS, COX-2, IL-1β, IL-6) by regulating the phosphorylation of the mitogen-activated protein kinases (MAPK) pathway and interventing the activation of the NF-κB pathway, which partly illustrated the basis of treatment of Isatidis Radix on cold, fever, sore throat, mumps, and tonsillitis in clinics.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1328 ◽  
Author(s):  
Weizhe Zhang ◽  
Jingang Hou ◽  
Xiaotong Yan ◽  
Jing Leng ◽  
Rongyan Li ◽  
...  

Although cisplatin is a potent chemotherapeutic agent against cancers, its clinical application is seriously limited by its severe side effects of nephrotoxicity. Previous studies reported that saponins isolated from the roots of Platycodon grandiflorum (PGS) exerted protective effects in various animal models of renal injury, with no confirmation on cisplatin-induced injury. This study was designed to investigate the protective effect of PGS (15 and 30 mg/kg) on cisplatin-induced kidney injury in mice. The levels of serum creatinine (CRE) and blood urea nitrogen (BUN), and renal histopathology demonstrated the protective effect of PGS against cisplatin-induced kidney injury. PGS exerted anti-inflammation effects via suppressing nuclear factor-kappa B (NF-κB) activation and alleviating the cisplatin-induced increase in inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in kidney tissues. The expressions of phosphorylation of phosphatidylinositol 3-kinase/protein kinase B and its downstream apoptotic factors, such as Bcl-2 and caspase families were regulated by PGS in a dose-dependent manner. In conclusion, PGS exerted kidney protection effects against cisplatin-induced kidney injury by inhibiting the activation of NF-κB and regulating PI3K/Akt/apoptosis signaling pathways in mice.


Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 482 ◽  
Author(s):  
Sobeh ◽  
Mahmoud ◽  
Rezq ◽  
Alsemeh ◽  
Sabry ◽  
...  

Patients with neuropathic pain experience chronic painful tingling, burning, and prickling sensations accompanied with hyperalgesia and/or allodynia. In this study, 38 secondary metabolites of a methanol extract from Salix tetrasperma flowers were identified by liquid chromatography-mass spectrometry (HPLC-MS/MS). The extract showed substantial anti-inflammatory, central and peripheral anti-nociceptive, antipyretic, and antioxidant activities in vitro and in different animal models. In the chronic constriction injury (CCI) rat model, the extract was able to attenuate and significantly relieve hyperalgesia and allodynia responses in a dose dependent manner and restore the myelin sheath integrity and Schwann cells average number in the sciatic nerve. The enzyme-linked immunosorbent assay (ELISA) showed that the extract significantly reduced the expression of various pro-inflammatory biomarkers including nuclear factor kabba B (NF-κB), tumor necrosis factor alpha (TNF-α), prostaglandin E2 (PGE2), 5-lipoxygenase (5-LOX), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and the oxidative stress biomarker NADPH oxidase 1 (NOX1), in brain stem and sciatic nerve tissues. These findings were supported by in vitro enzyme inhibition assays (COX-1, COX-2 and 5-LOX). Moreover, the extract significantly reduced p53 expression in the brain stem tissue. These findings support the use of S. tetrasperma in folk medicine to alleviate pain. It could be a promising natural product for further clinical investigations to treat inflammation, nociceptive pain and chronic neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document