scholarly journals Oxidative burst: an early plant response to pathogen infection

1997 ◽  
Vol 322 (3) ◽  
pp. 681-692 ◽  
Author(s):  
Przemysław WOJTASZEK

As plants are confined to the place where they grow, they have to develop a broad range of defence responses to cope with pathogenic infections. The oxidative burst, a rapid, transient, production of huge amounts of reactive oxygen species (ROS), is one of the earliest observable aspects of a plant's defence strategy. First this Review describes the chemistry of ROS (superoxide radical, hydrogen peroxide and hydroxyl radical). Secondly, the role of ROS in defence responses is demonstrated, and some important issues are considered, such as: (1) which of the ROS is a major building element of the oxidative burst; (2) the spatial and temporal regulation of the oxidative burst; and (3) differences in the plant's responses to biotic and abiotic elicitation. Thirdly, the relationships between the oxidative burst and other plant defence responses are indicated. These include: (1) an oxygen consumption, (2) the production of phytoalexins, (3) systemic acquired resistance, (4) immobilization of plant cell wall proteins, (5) changes in membrane permeability and ion fluxes and (6) a putative role in hypersensitive cell death. Wherever possible, the comparisons with models applicable to animal systems are presented. Finally, the question of the origin of ROS in the oxidative burst is considered, and two major hypotheses, (1) the action of NADPH oxidase system analogous to that of animal phagocytes, and (2) the pH-dependent generation of hydrogen peroxide by a cell wall peroxidase, are presented. On the basis of this material, a third ‘unifying’ hypothesis is presented, where transient changes in the pH of the cell wall compartment are indicated as a core phenomenon in evoking ROS production. Additionally, a germin/oxalate oxidase system which generates H2O2 in response to pathogenic infection is also described.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jamshaid Hussain ◽  
Jian Chen ◽  
Vittoria Locato ◽  
Wilma Sabetta ◽  
Smrutisanjita Behera ◽  
...  

Abstract The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 52
Author(s):  
Jamsari Jamsari ◽  
Maythesya Oktavioni ◽  
Bastian Nova ◽  
Ifan Aulia Candra ◽  
Alfi Asben ◽  
...  

Background: The non-expressor of pathogenesis related gene 1 (NPR1) protein is one of the key regulators in the systemic acquired resistance plant defence system. The cis-acting elements of its distal promoter gene are characterized by salicylic acid inducing elements such as the W-box, RAV1AAT and ASF1, accompanied with enhancer and silencer elements. This study was aimed to isolate and characterize the distal promoter sequence of the NPR1 gene (PD_CbNPR1) from the chili pepper (Capsicum annuum L.) genotype Berangkai, a local genotype known to produce large yields, but is susceptible to viral infection. Elucidating its sequence structure will open a broad range of possibilities to engineer the NPR1 gene expression which is important to improve chili pepper resistant. Methods: PCR-based cloning combined with a primer walking strategy was applied in this study. The BioEdit tool was used to edit the sequence and verify sequence integrity, while homology analysis was conducted with BLASTn searching. Identification of a cis-acting element was detected by PLACE. Results: Isolation of the complete distal promoter sequence of PD_CbNPR1 produced a fragment 5,950 bp in size. BLASTn search analysis indicated that PD_CbNPR1 sequence is highly conserved (99% homology) showing only a single nucleotide polymorphism (SNP) (base substitution) compared with its reference sequence. Analysis using PLACE tools successfully identified nine cis-acting elements containing a W-box, WLE1, RAV1AAT, TATA-box, CAAT-box, GARE and GT1 with multi repeats and diverse motives, as well as enhancer and silencer elements, which is characterized by a CCAAT-box and GAGAAATT pattern, respectively. Conclusion: The distal promoter of the NPR1 gene is highly conserved, showing only one SNP caused by one base substitution event.


2018 ◽  
Vol 15 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Puja Chandrayan

Pectin is an integral part of plant cell wall and since centuries pectin extracted from plants is widely used in food and fruit juice processing. Moreover, in last half century, the applications have also invaded into many bio-processing applications such as pharmaceutical, bioenergy, textile, paper and tea processing. In these growing industries, the use of pectinases has grown with a significant amount i.e. approximately 10 % of total global enzyme market comes from pectinases. Herein comprehensive analyses of information related to structure and function of pectin in plant cell wall as well as structural classes of pectins have been discussed. The major function of pectin is in cementing the cellulose and hemicelluloses network, cell-cell adhesion and plant defence. Keeping the wide use of pectin in food industry and growing need of environment friendly technology for pectin extraction has accelerated the demand of pectin degrading enzymes (PDEs). PDEs are from three enzyme classes: carbohydrate esterases from CE8 and CE12 family, glycoside hydrolases from GH28 family and lyases from PL1, 2, 3, 9 and 10. We have reviewed the literature related to abundance and structure-function of these abovementioned enzymes from bacteria. From the current available literature, we found very limited information is present about thermostable PDEs. Hence, in future it could be a topic of study to gain the insight about structure-function of enzymes together with the expanded role of thermostable enzymes in development of bioprocesses based on these enzymes.


RSC Advances ◽  
2014 ◽  
Vol 4 (33) ◽  
pp. 17282-17292 ◽  
Author(s):  
Muyang Li ◽  
Sivakumar Pattathil ◽  
Michael G. Hahn ◽  
David B. Hodge

Glycome profiling was used to provide insight into the structural basis for how a mild alkaline-oxidative pretreatment may impact the composition and structural organization of the cell walls taxonomically diverse plants.


2021 ◽  
Author(s):  
Ryan Lenz ◽  
Katherine Louie ◽  
Kelsey Sondreli ◽  
Stephanie Galanie ◽  
Jin-Gui Chen ◽  
...  

Sphaerulina musiva is an economically and ecologically important fungal pathogen that causes Septoria stem canker and leaf spot disease of Populus species. To bridge the gap between genetic markers and structural barriers previously found to be linked to Septoria (Sphaerulina musiva) canker disease resistance in poplar, we employed hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry (MS/MS) to identify and quantify metabolites involved with signaling and cell wall re-modelling. Fluctuations in signaling molecules, organic acids, amino acids, sterols, phenolics, and saccharides in resistant and susceptible Populus trichocarpa inoculated with Sphaerulina musiva, were observed. The patterns of 222 metabolites in the resistant host implicates systemic acquired resistance (SAR), cell wall apposition, and lignin deposition as modes of resistance to this hemibiotrophic pathogen. This pattern is consistent with the expected response to the biotrophic phase of S. musiva colonization during the first 24 hours post-inoculation. The fungal pathogen metabolized key regulatory signals of SAR, other phenolics, and precursors of lignin biosynthesis which were depleted in the susceptible host. This is the first study to characterize metabolites associated with the response to initial colonization by S. musiva between resistant and susceptible hosts.


2018 ◽  
Vol 31 (1) ◽  
pp. 46-60 ◽  
Author(s):  
Verónica Hael-Conrad ◽  
Silvia Marisa Perato ◽  
Marta Eugenia Arias ◽  
Martín Gustavo Martínez-Zamora ◽  
Pía de los Ángeles Di Peto ◽  
...  

The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅− and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro–oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.


2006 ◽  
Vol 19 (10) ◽  
pp. 1138-1146 ◽  
Author(s):  
Ines C. Raacke ◽  
Uta von Rad ◽  
Martin J. Mueller ◽  
Susanne Berger

Cell-wall and glucopeptide components of yeast have been reported to exhibit elicitor activity. The mode of action of defense activation by yeast is not known so far. In this study, we used the model plant Arabidopsis to investigate the activation of defense responses by yeast, the effect on resistance against different pathogens, and the mode of action. Treatment of Arabidopsis plants with an autoclaved yeast suspension induced the expression of systemic acquired resistance-related genes and accumulation of the phytoalexin camalexin. Symptom development and bacterial growth after infection with a virulent strain of the pathogen Pseudomonas syringae was reduced in yeast-pretreated plants. No protection was detectable in mutants affected in the salicylate pathway, while mutants in the jasmonate or camalexin pathway were protected by yeast, indicating that the salicylate pathway is necessary for the yeast-induced resistance against P. syringae. Yeast also reduced symptom development after challenge with Botrytis cinerea. This protection was detectable in all mutants tested, indicating that it is independent of the salicylate, jasmonate, and camalexin pathway.


1995 ◽  
Vol 8 (2) ◽  
pp. 227-233 ◽  
Author(s):  
Urs Neuenschwander ◽  
Bernard Vernooij ◽  
Leslie Friedrich ◽  
Scott Uknes ◽  
Helmut Kessmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document