Identification of features associated with plant cell wall recalcitrance to pretreatment by alkaline hydrogen peroxide in diverse bioenergy feedstocks using glycome profiling

RSC Advances ◽  
2014 ◽  
Vol 4 (33) ◽  
pp. 17282-17292 ◽  
Author(s):  
Muyang Li ◽  
Sivakumar Pattathil ◽  
Michael G. Hahn ◽  
David B. Hodge

Glycome profiling was used to provide insight into the structural basis for how a mild alkaline-oxidative pretreatment may impact the composition and structural organization of the cell walls taxonomically diverse plants.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1263
Author(s):  
David Stuart Thompson ◽  
Azharul Islam

The extensibility of synthetic polymers is routinely modulated by the addition of lower molecular weight spacing molecules known as plasticizers, and there is some evidence that water may have similar effects on plant cell walls. Furthermore, it appears that changes in wall hydration could affect wall behavior to a degree that seems likely to have physiological consequences at water potentials that many plants would experience under field conditions. Osmotica large enough to be excluded from plant cell walls and bacterial cellulose composites with other cell wall polysaccharides were used to alter their water content and to demonstrate that the relationship between water potential and degree of hydration of these materials is affected by their composition. Additionally, it was found that expansins facilitate rehydration of bacterial cellulose and cellulose composites and cause swelling of plant cell wall fragments in suspension and that these responses are also affected by polysaccharide composition. Given these observations, it seems probable that plant environmental responses include measures to regulate cell wall water content or mitigate the consequences of changes in wall hydration and that it may be possible to exploit such mechanisms to improve crop resilience.


2020 ◽  
Author(s):  
Huimin Xu ◽  
Yuanyuan Zhao ◽  
Yuanzhen Suo ◽  
Yayu Guo ◽  
Yi Man ◽  
...  

Abstract Background: Cell wall imaging can considerably permit direct visualization of the molecular architecture of cell walls and provide the detailed chemical information on wall polymers, which is imperative to better exploit and use the biomass polymers; however, detailed imaging and quantifying of the native composition and architecture in the cell wall remains challenging.Results: Here, we describe a label-free imaging technology, coherent Raman scattering microscopy (CRS), including coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy, which images the major structures and chemical composition of plant cell walls. The major steps of the procedure are demonstrated, including sample preparation, setting the mapping parameters, analysis of spectral data, and image generation. Applying this rapid approach, which will help researchers understand the highly heterogeneous structures and organization of plant cell walls.Conclusions: This method can potentially be incorporated into label-free microanalyses of plant cell wall chemical composition based on the in situ vibrations of molecules.


2019 ◽  
Vol 20 (12) ◽  
pp. 2946 ◽  
Author(s):  
Xiao Han ◽  
Li-Jun Huang ◽  
Dan Feng ◽  
Wenhan Jiang ◽  
Wenzhuo Miu ◽  
...  

Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.


1997 ◽  
Vol 10 (7) ◽  
pp. 803-811 ◽  
Author(s):  
B. Boher ◽  
M. Nicole ◽  
M. Potin ◽  
J. P. Geiger

The location of lipopolysaccharides produced by Xanthomonas axonopodis pv. manihotis during pathogenesis on cassava (Manihot esculenta) was determined by fluorescence and electron microscopy immunolabeling with monoclonal antibodies. During the early stages of infection, pathogen lipopolysaccharides were detected on the outer surface of the bacterial envelope and in areas of the plant middle lamellae in the vicinity of the pathogen. Later in the infection process, lipopolysaccharide-specific antibodies bound to areas where the plant cell wall was heavily degraded. Lipopolysaccharides were not detected in the fibrillar matrix filling intercellular spaces of infected cassava leaves. Monoclonal antibodies specific for the exopolysaccharide xanthan side chain labeled the bacteria, the fibrillar matrix, and portions of the host cell wall. The association of Xanthomonas lipopolysaccharides with host cell walls during plant infection is consistent with a role of these bacterial extracellular polysaccharides in the infection process.


2018 ◽  
Vol 19 (9) ◽  
pp. 2691 ◽  
Author(s):  
Michael Ogden ◽  
Rainer Hoefgen ◽  
Ute Roessner ◽  
Staffan Persson ◽  
Ghazanfar Khan

Nutrients are critical for plants to grow and develop, and nutrient depletion severely affects crop yield. In order to optimize nutrient acquisition, plants adapt their growth and root architecture. Changes in growth are determined by modifications in the cell walls surrounding every plant cell. The plant cell wall, which is largely composed of complex polysaccharides, is essential for plants to attain their shape and to protect cells against the environment. Within the cell wall, cellulose strands form microfibrils that act as a framework for other wall components, including hemicelluloses, pectins, proteins, and, in some cases, callose, lignin, and suberin. Cell wall composition varies, depending on cell and tissue type. It is governed by synthesis, deposition and remodeling of wall components, and determines the physical and structural properties of the cell wall. How nutrient status affects cell wall synthesis and organization, and thus plant growth and morphology, remains poorly understood. In this review, we aim to summarize and synthesize research on the adaptation of root cell walls in response to nutrient availability and the potential role of cell walls in nutrient sensing.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tayebeh Abedi ◽  
Romain Castilleux ◽  
Pieter Nibbering ◽  
Totte Niittylä

Plant cell wall associated hydroxyproline-rich glycoproteins (HRGPs) are involved in several aspects of plant growth and development, including wood formation in trees. HRGPs such as arabinogalactan-proteins (AGPs), extensins (EXTs), and proline rich proteins (PRPs) are important for the development and architecture of plant cell walls. Analysis of publicly available gene expression data revealed that many HRGP encoding genes show tight spatio-temporal expression patterns in the developing wood of Populus that are indicative of specific functions during wood formation. Similar results were obtained for the expression of glycosyl transferases putatively involved in HRGP glycosylation. In situ immunolabelling of transverse wood sections using AGP and EXT antibodies revealed the cell type specificity of different epitopes. In mature wood AGP epitopes were located in xylem ray cell walls, whereas EXT epitopes were specifically observed between neighboring xylem vessels, and on the ray cell side of the vessel walls, likely in association with pits. Molecular mass and glycan analysis of AGPs and EXTs in phloem/cambium, developing xylem, and mature xylem revealed clear differences in glycan structures and size between the tissues. Separation of AGPs by agarose gel electrophoresis and staining with β-D-glucosyl Yariv confirmed the presence of different AGP populations in phloem/cambium and xylem. These results reveal the diverse changes in HRGP-related processes that occur during wood formation at the gene expression and HRGP glycan biosynthesis levels, and relate HRGPs and glycosylation processes to the developmental processes of wood formation.


2015 ◽  
Vol 66 (14) ◽  
pp. 4279-4294 ◽  
Author(s):  
Sivakumar Pattathil ◽  
Michael G. Hahn ◽  
Bruce E. Dale ◽  
Shishir P. S. Chundawat

1986 ◽  
Vol 32 (12) ◽  
pp. 947-952 ◽  
Author(s):  
Shiro Higashi ◽  
Kazuya Kushiyama ◽  
Mikiko Abe

The morphological characteristics of infection threads in the root nodules of Astragalus sinicus were examined by scanning and transmission electron microscopy. The infection threads, epidermal cell walls, and vascular bundles of the nodule were not altered when a nodule was treated with driselase (a plant cell wall degrading enzyme), although the cell walls of meristematic and bacteroid-including zones were completely decomposed by the enzyme treatment. Some infection threads were funnel shaped at the site of attachment of the infection thread to the host cell wall.


2016 ◽  
Vol 113 (40) ◽  
pp. 11348-11353 ◽  
Author(s):  
Shundai Li ◽  
Logan Bashline ◽  
Yunzhen Zheng ◽  
Xiaoran Xin ◽  
Shixin Huang ◽  
...  

Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana. This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs.


Sign in / Sign up

Export Citation Format

Share Document