scholarly journals The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro–Hypersensitive Responses in Fragaria ananassa

2018 ◽  
Vol 31 (1) ◽  
pp. 46-60 ◽  
Author(s):  
Verónica Hael-Conrad ◽  
Silvia Marisa Perato ◽  
Marta Eugenia Arias ◽  
Martín Gustavo Martínez-Zamora ◽  
Pía de los Ángeles Di Peto ◽  
...  

The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅− and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro–oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2163 ◽  
Author(s):  
Weronika Czarnocka ◽  
Yosef Fichman ◽  
Maciej Bernacki ◽  
Elżbieta Różańska ◽  
Izabela Sańko-Sawczenko ◽  
...  

Because of their sessile nature, plants evolved integrated defense and acclimation mechanisms to simultaneously cope with adverse biotic and abiotic conditions. Among these are systemic acquired resistance (SAR) and systemic acquired acclimation (SAA). Growing evidence suggests that SAR and SAA activate similar cellular mechanisms and employ common signaling pathways for the induction of acclimatory and defense responses. It is therefore possible to consider these processes together, rather than separately, as a common systemic acquired acclimation and resistance (SAAR) mechanism. Arabidopsis thaliana flavin-dependent monooxygenase 1 (FMO1) was previously described as a regulator of plant resistance in response to pathogens as an important component of SAR. In the current study, we investigated its role in SAA, induced by a partial exposure of Arabidopsis rosette to local excess light stress. We demonstrate here that FMO1 expression is induced in leaves directly exposed to excess light stress as well as in systemic leaves remaining in low light. We also show that FMO1 is required for the systemic induction of ASCORBATE PEROXIDASE 2 (APX2) and ZINC-FINGER OF ARABIDOPSIS 10 (ZAT10) expression and spread of the reactive oxygen species (ROS) systemic signal in response to a local application of excess light treatment. Additionally, our results demonstrate that FMO1 is involved in the regulation of excess light-triggered systemic cell death, which is under control of LESION SIMULATING DISEASE 1 (LSD1). Our study indicates therefore that FMO1 plays an important role in triggering SAA response, supporting the hypothesis that SAA and SAR are tightly connected and use the same signaling pathways.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1490
Author(s):  
Osama M. Elzamzamy ◽  
Brandon E. Johnson ◽  
Wei-Chih Chen ◽  
Gangqing Hu ◽  
Reinhold Penner ◽  
...  

Multiple myeloma (MM) is a currently incurable hematologic cancer. Patients that initially respond to therapeutic intervention eventually relapse with drug resistant disease. Thus, novel treatment strategies are critically needed to improve patient outcomes. Our group has developed a novel cyclic peptide referred to as MTI-101 for the treatment of MM. We previously reported that acquired resistance to HYD-1, the linear form of MTI-101, correlated with the repression of genes involved in store operated Ca2+ entry (SOCE): PLCβ, SERCA, ITPR3, and TRPC1 expression. In this study, we sought to determine the role of TRPC1 heteromers in mediating MTI-101 induced cationic flux. Our data indicate that, consistent with the activation of TRPC heteromers, MTI-101 treatment induced Ca2+ and Na+ influx. However, replacing extracellular Na+ with NMDG did not reduce MTI-101-induced cell death. In contrast, decreasing extracellular Ca2+ reduced both MTI-101-induced Ca2+ influx as well as cell death. The causative role of TRPC heteromers was established by suppressing STIM1, TRPC1, TRPC4, or TRPC5 function both pharmacologically and by siRNA, resulting in a reduction in MTI-101-induced Ca2+ influx. Mechanistically, MTI-101 treatment induces trafficking of TRPC1 to the membrane and co-immunoprecipitation studies indicate that MTI-101 treatment induces a TRPC1-STIM1 complex. Moreover, treatment with calpeptin inhibited MTI-101-induced Ca2+ influx and cell death, indicating a role of calpain in the mechanism of MTI-101-induced cytotoxicity. Finally, components of the SOCE pathway were found to be poor prognostic indicators among MM patients, suggesting that this pathway is attractive for the treatment of MM.


2002 ◽  
Vol 14 (8) ◽  
pp. 1937-1951 ◽  
Author(s):  
David Wendehenne ◽  
Olivier Lamotte ◽  
Jean-Marie Frachisse ◽  
Hélène Barbier-Brygoo ◽  
Alain Pugin

2019 ◽  
Vol 22 (8) ◽  
pp. 987-991 ◽  
Author(s):  
E. A. Trifonova ◽  
S. M. Ibragimova ◽  
O. A. Volkova ◽  
V. K. Shumny ◽  
A. V. Kochetov

Disease resistance is an important characteristic for each variety of potato, and the search for pathogen resistance markers is one of the primary tasks of plant breeding. Higher plants possess a wide spectrum of enzymes catalyzing the hydrolysis of nucleic acids; it is believed that protection against pathogens is the most probable function of the enzymes. RNases are actively involved in several immune systems of higher plants, for example, systemic acquired resistance (SAR) and genetic silencing, hence RNase activity in plant leaves, as a relatively easily measured parameter, can serve as a good marker for the selection of pathogen resistant varieties. We have analyzed sixteen varieties of potatoes permitted for use on the territory of the Russian Federation and tested the correlation of the level of variety­specifc ribonuclease (RNase) activity with such economically valuable traits as maturity and resistance to viruses, late blight and common scab. In general, the level of RNase activity was variety­specifc, which was confrmed by very small values of average squared error for the majority of tested varieties. We have detected a statistically signifcant positive correlation of RNase activity in potato leaves with increased resistance of varieties to phytopathogenic viruses, a negative correlation with resistance to scab and an absence of a signifcant connection with maturity and resistance to late blight, regardless of the organ affected by the oomycete. Thus, the level of RNase activity in potato leaves can be used as a selective marker for resistance to viruses, while varieties with increased RNase activity should be avoided when selecting resistance to scab.


1998 ◽  
Vol 11 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Akira Yano ◽  
Kaoru Suzuki ◽  
Hirofumi Uchimiya ◽  
Hideaki Shinshi

Treatment of suspension-cultured tobacco (Nicotiana tabacum cv. Xanthi) cells (line XD6S) with fungal proteinaceous elicitors, namely, xylanase (EC 3.2.1.8) from Trichoderma viride (TvX) and xylanase from T. reesei (TrX), induced shrinkage of the cytoplasm, condensation of the nucleus, and, finally, cell death, which were accompanied by typical defense responses that included an oxidative burst and expression of defense genes. A Ca2+ channel blocker, Gd3+, inhibited the typical response of XD6S cells to TvX, which resembled the hypersensitive reaction (HR). These results suggested that the influx of Ca2+ ions plays an important role as a secondary signal. The HR was not observed in TvX-treated tobacco cells (line BY-2) derived from cv. Bright Yellow 2. This result suggests that key features of cultivar-specific interaction can be observed in cultures of tobacco cells. Xylanase from Bacillus circulans (BcX) and B. subtilis (BsX), which has enzymatic properties similar to those of TvX but an amino acid sequence different from that of TvX, did not induce the HR-like response in XD6S cells. These results suggest that the elicitor action of TvX is not due to its ability to hydrolyze cell walls but requires the TvX-specific recognition factors in plant cells. Thus, TvX-induced cell death was not due to some general toxic effect, but seems to be mediated by the activation of a specific cellular signal-transduction cascade that converges with a pathway that activates the intracellular cell death program.


2019 ◽  
Vol 20 (5) ◽  
pp. 1211 ◽  
Author(s):  
Jingjing Zhang ◽  
Ziyu Ren ◽  
Yuqing Zhou ◽  
Zheng Ma ◽  
Yanqin Ma ◽  
...  

The circadian clock in plants synchronizes biological processes that display cyclic 24-h oscillation based on metabolic and physiological reactions. This clock is a precise timekeeping system, that helps anticipate diurnal changes; e.g., expression levels of clock-related genes move in synchrony with changes in pathogen infection and help prepare appropriate defense responses in advance. Salicylic acid (SA) is a plant hormone and immune signal involved in systemic acquired resistance (SAR)-mediated defense responses. SA signaling induces cellular redox changes, and degradation and rhythmic nuclear translocation of the non-expresser of PR genes 1 (NPR1) protein. Recent studies demonstrate the ability of the circadian clock to predict various potential attackers, and of redox signaling to determine appropriate defense against pathogen infection. Interaction of the circadian clock with redox rhythm promotes the balance between immunity and growth. We review here a variety of recent evidence for the intricate relationship between circadian clock and plant immune response, with a focus on the roles of redox rhythm and NPR1 in the circadian clock and plant immunity.


2019 ◽  
Vol 20 (11) ◽  
pp. 2849 ◽  
Author(s):  
Songwei Li ◽  
Yijie Dong ◽  
Lin Li ◽  
Yi Zhang ◽  
Xiufen Yang ◽  
...  

Panama disease, or Fusarium wilt, the most serious disease in banana cultivation, is caused by Fusarium oxysporum f. sp. cubense (FOC) and has led to great economic losses worldwide. One effective way to combat this disease is by enhancing host plant resistance. The cerato-platanin protein (CPP) family is a group of small secreted cysteine-rich proteins in filamentous fungi. CPPs as elicitors can trigger the immune system resulting in defense responses in plants. In this study, we characterized a novel cerato-platanin-like protein in the secretome of Fusarium oxysporum f. sp. cubense race 4 (FOC4), named FocCP1. In tobacco, the purified recombinant FocCP1 protein caused accumulation of reactive oxygen species (ROS), formation of necrotic reaction, deposition of callose, expression of defense-related genes, and accumulation of salicylic acid (SA) and jasmonic acid (JA) in tobacco. These results indicated that FocCP1 triggered a hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco. Furthermore, FocCP1 enhanced resistance tobacco mosaic virus (TMV) disease and Pseudomonas syringae pv. tabaci 6605 (Pst. 6605) infection in tobacco and improved banana seedling resistance to FOC4. All results provide the possibility of further research on immune mechanisms of plant and pathogen interactions, and lay a foundation for a new biological strategy of banana wilt control in the future.


2019 ◽  
Vol 20 (3) ◽  
pp. 671 ◽  
Author(s):  
Ning Li ◽  
Xiao Han ◽  
Dan Feng ◽  
Deyi Yuan ◽  
Li-Jun Huang

During their lifetime, plants encounter numerous biotic and abiotic stresses with diverse modes of attack. Phytohormones, including salicylic acid (SA), ethylene (ET), jasmonate (JA), abscisic acid (ABA), auxin (AUX), brassinosteroid (BR), gibberellic acid (GA), cytokinin (CK) and the recently identified strigolactones (SLs), orchestrate effective defense responses by activating defense gene expression. Genetic analysis of the model plant Arabidopsis thaliana has advanced our understanding of the function of these hormones. The SA- and ET/JA-mediated signaling pathways were thought to be the backbone of plant immune responses against biotic invaders, whereas ABA, auxin, BR, GA, CK and SL were considered to be involved in the plant immune response through modulating the SA-ET/JA signaling pathways. In general, the SA-mediated defense response plays a central role in local and systemic-acquired resistance (SAR) against biotrophic pathogens, such as Pseudomonas syringae, which colonize between the host cells by producing nutrient-absorbing structures while keeping the host alive. The ET/JA-mediated response contributes to the defense against necrotrophic pathogens, such as Botrytis cinerea, which invade and kill hosts to extract their nutrients. Increasing evidence indicates that the SA- and ET/JA-mediated defense response pathways are mutually antagonistic.


Sign in / Sign up

Export Citation Format

Share Document