scholarly journals Conserved structure of the NPR1 gene distal promoter isolated from a chili pepper (Capsicum annuum L.) in West Sumatera

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 52
Author(s):  
Jamsari Jamsari ◽  
Maythesya Oktavioni ◽  
Bastian Nova ◽  
Ifan Aulia Candra ◽  
Alfi Asben ◽  
...  

Background: The non-expressor of pathogenesis related gene 1 (NPR1) protein is one of the key regulators in the systemic acquired resistance plant defence system. The cis-acting elements of its distal promoter gene are characterized by salicylic acid inducing elements such as the W-box, RAV1AAT and ASF1, accompanied with enhancer and silencer elements. This study was aimed to isolate and characterize the distal promoter sequence of the NPR1 gene (PD_CbNPR1) from the chili pepper (Capsicum annuum L.) genotype Berangkai, a local genotype known to produce large yields, but is susceptible to viral infection. Elucidating its sequence structure will open a broad range of possibilities to engineer the NPR1 gene expression which is important to improve chili pepper resistant. Methods: PCR-based cloning combined with a primer walking strategy was applied in this study. The BioEdit tool was used to edit the sequence and verify sequence integrity, while homology analysis was conducted with BLASTn searching. Identification of a cis-acting element was detected by PLACE. Results: Isolation of the complete distal promoter sequence of PD_CbNPR1 produced a fragment 5,950 bp in size. BLASTn search analysis indicated that PD_CbNPR1 sequence is highly conserved (99% homology) showing only a single nucleotide polymorphism (SNP) (base substitution) compared with its reference sequence. Analysis using PLACE tools successfully identified nine cis-acting elements containing a W-box, WLE1, RAV1AAT, TATA-box, CAAT-box, GARE and GT1 with multi repeats and diverse motives, as well as enhancer and silencer elements, which is characterized by a CCAAT-box and GAGAAATT pattern, respectively. Conclusion: The distal promoter of the NPR1 gene is highly conserved, showing only one SNP caused by one base substitution event.

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 52
Author(s):  
Jamsari Jamsari ◽  
Maythesya Oktavioni ◽  
Bastian Nova ◽  
Ifan Aulia Candra ◽  
Alfi Asben ◽  
...  

Background: The non-expressor of pathogenesis related gene 1 (NPR1) protein is one of the key regulators in the systemic acquired resistance plant defense system. The cis-acting elements of its distal promoter gene are characterized by salicylic acid inducing elements such as the W-box, RAV1AAT and ASF1, accompanied by enhancer and silencer elements. This study was aimed to isolate and characterize the distal promoter sequence of the NPR1 gene (PD_CbNPR1) from the chili pepper (Capsicum annuum L.) genotype Berangkai, a local genotype known to produce large yields, but is susceptible to viral infection. Elucidating its sequence structure will open a broad range of possibilities to engineer the NPR1 gene expression which is important to improve chili pepper resistant. Methods: PCR-based cloning combined with a primer walking strategy was applied in this study. The BioEdit tool was used to edit the sequence and verify sequence integrity, while homology analysis was conducted with BLASTn searching. Identification of a cis-acting element was detected by PLACE, PlantCare, and PlantPAN. Results: Isolation of the complete distal promoter sequence of PD_CbNPR1 produced a fragment 5,950 bp in size. BLASTn search analysis indicated that PD_CbNPR1 sequence is highly conserved (99% identity) showing only a single nucleotide polymorphism (SNP) (base substitution) compared with its reference sequence. Analysis using PLACE tools successfully identified nine cis-acting elements containing a W-box, WLE1, RAV1AAT, TATA-box, CAAT-box, GARE and GT1 with multi repeats and diverse motives, as well as enhancer and silencer elements, which is characterized by a CCAAT-box and GAGAAATT pattern, respectively. Conclusion: The distal promoter of the NPR1 gene is highly conserved, showing only one SNP caused by one base substitution event.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jamshaid Hussain ◽  
Jian Chen ◽  
Vittoria Locato ◽  
Wilma Sabetta ◽  
Smrutisanjita Behera ◽  
...  

Abstract The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


1997 ◽  
Vol 322 (3) ◽  
pp. 681-692 ◽  
Author(s):  
Przemysław WOJTASZEK

As plants are confined to the place where they grow, they have to develop a broad range of defence responses to cope with pathogenic infections. The oxidative burst, a rapid, transient, production of huge amounts of reactive oxygen species (ROS), is one of the earliest observable aspects of a plant's defence strategy. First this Review describes the chemistry of ROS (superoxide radical, hydrogen peroxide and hydroxyl radical). Secondly, the role of ROS in defence responses is demonstrated, and some important issues are considered, such as: (1) which of the ROS is a major building element of the oxidative burst; (2) the spatial and temporal regulation of the oxidative burst; and (3) differences in the plant's responses to biotic and abiotic elicitation. Thirdly, the relationships between the oxidative burst and other plant defence responses are indicated. These include: (1) an oxygen consumption, (2) the production of phytoalexins, (3) systemic acquired resistance, (4) immobilization of plant cell wall proteins, (5) changes in membrane permeability and ion fluxes and (6) a putative role in hypersensitive cell death. Wherever possible, the comparisons with models applicable to animal systems are presented. Finally, the question of the origin of ROS in the oxidative burst is considered, and two major hypotheses, (1) the action of NADPH oxidase system analogous to that of animal phagocytes, and (2) the pH-dependent generation of hydrogen peroxide by a cell wall peroxidase, are presented. On the basis of this material, a third ‘unifying’ hypothesis is presented, where transient changes in the pH of the cell wall compartment are indicated as a core phenomenon in evoking ROS production. Additionally, a germin/oxalate oxidase system which generates H2O2 in response to pathogenic infection is also described.


2019 ◽  
Vol 46 (12) ◽  
pp. 1114
Author(s):  
Arnaud Thierry Djami-Tchatchou ◽  
Lerato Bame Tsalaemang Matsaunyane ◽  
Chimdi Mang Kalu ◽  
Khayalethu Ntushelo

Chilli pepper (Capsicum annuum L.) is susceptible to Pectobacterium carotovorum subsp. carotovorum (Pcc), the causal agent of soft rot disease in crops. Understanding the molecular principles of systemic acquired resistance, which is poorly understood in chilli pepper, represents an important step towards understanding inducible defence responses and can assist in designing appropriate intervention strategies for crop disease management. Accordingly, we investigated (via real-time PCR and metabolomics profiling) the molecular response of chilli pepper to Pcc by characterisation of the crucial metabolic regulators involved in the establishment of defence response. We profiled 13 key inducible defence response genes, which included MYB transcriptor factor, ethylene response element-binding protein, suppressor of the G2 allele of Skp1, cytochrome P450, small Sar1 (GTPase), hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase, pathogenesis-related protein 1a, endo-1,3-β-glucanase, chitinase, proteinase inhibitor, defensin, coiled-coil-nucleotide-binding site-leucine-rich repeat (CC–NBS–LRR) resistance and phenylalanine ammonia lyase. In addition, we determined metabolomic shifts induced by Pcc in pepper. The PCR results revealed a significant induction of the selected plant defence-related genes in response to Pcc inoculation; the metabolomic profiling showed that of 99 primary metabolites profiled the quantities of acetylcarnitine, adenosine, adenosine 3′,5′ cyclic monophosphate, guanosine 3′,5′ cyclic monophosphate and inosine decreased in pepper leaves inoculated with Pcc.


2001 ◽  
Vol 54 ◽  
pp. 209-212 ◽  
Author(s):  
R.F. Van_Toor ◽  
M.V. Jaspers ◽  
A. Stewart

The synthetic plant defence elicitor acibenzolarSmethyl (CGA245704 50WG Syngenta Crop Protection) was applied to Camellia japonica bushes to induce systemic acquired resistance for protection of flowers against ascospore infection by Ciborinia camelliae Bushes were sprayed weekly at 500 mg/litre either before flowering during flowering or both before and during flowering All untreated and treated flowers became infected with camellia blight to the same degree and produced similar numbers of sclerotia averaging 34 sclerotia/flower Thus acibenzolarSmethyl was not effective in reducing the incidence of camellia flower blight


2006 ◽  
Vol 387 (8) ◽  
pp. 1101-1111 ◽  
Author(s):  
Laura Bertini ◽  
Annunziata Cascone ◽  
Marina Tucci ◽  
Rosalinda D'Amore ◽  
Iris Di Berardino ◽  
...  

Abstract Five new genes belonging to the pathogenesis-related (PR) 4 family have been cloned and characterised in Triticum aestivum. Two full-length genes, named wPR4e and wPR4f-b, were isolated by library screening, demonstrating the presence of a small intron only in wPR4f-b. Two other PR4 genes (wPR4f-a and wPR4f-c) were isolated by PCR, showing very high sequence identity with wPR4f-b and constituting a new sub-family. Transcription start analysis was performed by RLM-RACE, leading to the isolation of a fifth gene, named wPR4g, that is highly homologous to wPR4e; both encode putative vacuolar PR4 proteins (Wheatwin7 and Wheatwin5, respectively). wPR4e and wPR4f sub-family genes are induced by F. culmorum infection, by chemicals that lead to systemic acquired resistance and by wounding, showing different spatial and temporal induction pathways. In silico analysis of the 5′ untranslated regions of wPR4e and wPR4f-b revealed the presence of several abiotic and biotic stress-responsive elements. wPR4e and wPR4f-b putative promoters were fused to the β-glucuronidase (GUS) reporter gene, and transient and stable expression assays demonstrated that both are able to drive expression of GUS. Characterisation of these new PR4 genes and particularly of their 5′ untranslated regions, as well as the determination of their expression patterns, will contribute to our understanding of the responsiveness of this gene family to various stress conditions and of its role in plant defence.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1919
Author(s):  
Ricardo Sánchez-Cruz ◽  
Richa Mehta ◽  
Karina Atriztán-Hernández ◽  
Olivia Martínez-Villamil ◽  
María del Rayo Sánchez-Carbente ◽  
...  

Here, we analyzed the effects on Capsicum annuum plants of Trichoderma atroviride P. Karst strains altered in the expression of SWOLLENIN (SWO1), a protein with amorphogenic activity on plant cell wall components. Strains of T. atroviride that overexpressed the Taswo1 gene were constructed as well as deletion mutants. A novel, cheap and accurate method for assessing root colonization was developed. Colonization assays showed that the Taswo1 overexpressing strains invaded the host root better than the WT, resulting in a stronger plant growth-promoting effect. The expression of plant defense marker genes for both the systemic acquired resistance and induced systemic resistance pathways was enhanced in plants inoculated with Taswo1 overexpressing strains, while inoculation with deletion mutant strains resulted in a similar level of expression to that observed upon inoculation with the wild-type strain. Response to pathogen infection was also enhanced in the plants inoculated with the Taswo1 overexpressing strains, and surprisingly, an intermediate level of protection was achieved with the mutant strains. Tolerance to abiotic stresses was also higher in plants inoculated with the Taswo1 overexpressing strains but was similar in plants inoculated with the wild-type or the mutant strains. Compatible osmolyte production in drought conditions was studied. This study may contribute to improving Trichoderma biocontrol and biofertilization abilities.


2001 ◽  
Vol 25 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Keiko Yoshioka ◽  
Hideo Nakashita ◽  
Daniel F. Klessig ◽  
Isamu Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document