scholarly journals Endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 is a novel substrate of MK2 (MAPKAP kinase-2) involved in MK2-mediated TNFα production

2013 ◽  
Vol 457 (1) ◽  
pp. 229-229
Author(s):  
M. B. Menon ◽  
C. Tiedje ◽  
J. Lafera ◽  
N. Ronkina ◽  
T. Konen ◽  
...  
2001 ◽  
Vol 21 (13) ◽  
pp. 4276-4291 ◽  
Author(s):  
Richard G. Gardner ◽  
Alexander G. Shearer ◽  
Randolph Y. Hampton

ABSTRACT Ubiquitination is used to target both normal proteins for specific regulated degradation and misfolded proteins for purposes of quality control destruction. Ubiquitin ligases, or E3 proteins, promote ubiquitination by effecting the specific transfer of ubiquitin from the correct ubiquitin-conjugating enzyme, or E2 protein, to the target substrate. Substrate specificity is usually determined by specific sequence determinants, or degrons, in the target substrate that are recognized by the ubiquitin ligase. In quality control, however, a potentially vast collection of proteins with characteristic hallmarks of misfolding or misassembly are targeted with high specificity despite the lack of any sequence similarity between substrates. In order to understand the mechanisms of quality control ubiquitination, we have focused our attention on the first characterized quality control ubiquitin ligase, the HRD complex, which is responsible for the endoplasmic reticulum (ER)-associated degradation (ERAD) of numerous ER-resident proteins. Using an in vivo cross-linking assay, we directly examined the association of the separate HRDcomplex components with various ERAD substrates. We have discovered that the HRD ubiquitin ligase complex associates with both ERAD substrates and stable proteins, but only mediates ubiquitin-conjugating enzyme association with ERAD substrates. Our studies with the sterol pathway-regulated ERAD substrate Hmg2p, an isozyme of the yeast cholesterol biosynthetic enzyme HMG-coenzyme A reductase (HMGR), indicated that the HRD complex discerns between a degradation-competent “misfolded” state and a stable, tightly folded state. Thus, it appears that the physiologically regulated, HRD-dependent degradation of HMGR is effected by a programmed structural transition from a stable protein to a quality control substrate.


2013 ◽  
Vol 456 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Manoj B. Menon ◽  
Christopher Tiedje ◽  
Juri Lafera ◽  
Natalia Ronkina ◽  
Timo Konen ◽  
...  

The protein kinase MK2 phosphorylates the endoplasmic reticulum-associated ubiquitin-conjugating enzyme Ube2j1 under various stress conditions and during the innate immune response in macrophages. Although its apparent enzyme activity stays unaltered, Ube2j1 contributes to MK2-dependent biosynthesis of tumour necrosis factor α.


Author(s):  
Walker M. Jones ◽  
Aaron G. Davis ◽  
R. Hunter Wilson ◽  
Katherine L. Elliott ◽  
Isaiah Sumner

We present classical molecular dynamics (MD), Born-Oppenheimer molecular dynamics (BOMD), and hybrid quantum mechanics/molecular mechanics (QM/MM) data. MD was performed using the GPU accelerated pmemd module of the AMBER14MD package. BOMD was performed using CP2K version 2.6. The reaction rates in BOMD were accelerated using the Metadynamics method. QM/MM was performed using ONIOM in the Gaussian09 suite of programs. Relevant input files for BOMD and QM/MM are available.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yi-Chao Zheng ◽  
Yan-Jia Guo ◽  
Bo Wang ◽  
Chong Wang ◽  
M. A. A. Mamun ◽  
...  

AbstractUbiquitin-conjugating enzyme E2 M (UBE2M) and ubiquitin-conjugating enzyme E2 F (UBE2F) are the two NEDD8-conjugating enzymes of the neddylation pathway that take part in posttranslational modification and change the activity of target proteins. The activity of E2 enzymes requires both a 26-residue N-terminal docking peptide and a conserved E2 catalytic core domain, which is the basis for the transfer of neural precursor cell-expressed developmentally downregulated 8 (NEDD8). By recruiting E3 ligases and targeting cullin and non-cullin substrates, UBE2M and UBE2F play diverse biological roles. Currently, there are several inhibitors that target the UBE2M-defective in cullin neddylation protein 1 (DCN1) interaction to treat cancer. As described above, this review provides insights into the mechanism of UBE2M and UBE2F and emphasizes these two E2 enzymes as appealing therapeutic targets for the treatment of cancers.


2000 ◽  
Vol 11 (8) ◽  
pp. 2821-2831 ◽  
Author(s):  
Atsushi Yamanaka ◽  
Shigetsugu Hatakeyama ◽  
Kin-ichiro Kominami ◽  
Masatoshi Kitagawa ◽  
Masaki Matsumoto ◽  
...  

Progression through mitosis requires the precisely timed ubiquitin-dependent degradation of specific substrates. E2-C is a ubiquitin-conjugating enzyme that plays a critical role with anaphase-promoting complex/cyclosome (APC/C) in progression of and exit from M phase. Here we report that mammalian E2-C is expressed in late G2/M phase and is degraded as cells exit from M phase. The mammalian E2-C shows an autoubiquitinating activity leading to covalent conjugation to itself with several ubiquitins. The ubiquitination of E2-C is strongly enhanced by APC/C, resulting in the formation of a polyubiquitin chain. The polyubiquitination of mammalian E2-C occurs only when cells exit from M phase. Furthermore, mammalian E2-C contains two putative destruction boxes that are believed to act as recognition motifs for APC/C. The mutation of this motif reduced the polyubiquitination of mammalian E2-C, resulting in its stabilization. These results suggest that mammalian E2-C is itself a substrate of the APC/C-dependent proteolysis machinery, and that the periodic expression of mammalian E2-C may be a novel autoregulatory system for the control of the APC/C activity and its substrate specificity.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Huiyuan Zhang ◽  
Hongbo Hu ◽  
Nathaniel Greeley ◽  
Jin Jin ◽  
Allison J Matthews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document