Characterization, expression and localization of S-adenosylhomocysteine hydrolase from amphioxus Branchiostoma belcheri tsingtaunese

2008 ◽  
Vol 28 (3) ◽  
pp. 135-144 ◽  
Author(s):  
Yuan Wang ◽  
Bosheng Zhao ◽  
Shicui Zhang ◽  
Xiaojuan Qu

A cDNA clone encoding AmphiSAHH [amphioxus SAHH (S-adenosylhomocysteine hydrolase)] protein was isolated from a cDNA library from the gut of Branchiostoma belcheri tsingtaunese. It contained a 1305 bp open reading frame corresponding to a deduced protein of 434 amino acid residues, with a predicted molecular mass of approx. 47.8 kDa. Phylogenetic analysis showed that AmphiSAHH and sea-urchin SAHH joined together and positioned at the base of the vertebrate SAHH clade, suggesting that both AmphiSAHH and sea-urchin SAHH might share some characteristics of the archetype of vertebrate SAHH proteins. The genomic DNA sequence of AmphiSAHH contained eight exons and seven introns, which was similar to B. floridae and sea-urchin SAHH exon/intron organization. Sequence comparison suggested the evolutionary appearance of the ten exon/nine intron organization of SAHH genes after the split of invertebrates and vertebrates, after which it has been highly conserved. AmphiSAHH has been successfully expressed in Escherichia coli and purified. Western blotting confirmed that the enzyme has a native molecular mass of approx. 48 kDa, and the catalytic activities and NAD+/NADH binding affinity of recombinant AmphiSAHH were measured. Immunohistochemistry analysis showed that SAHH was strongly expressed in hepatic caecum, gill, spermary and ovary of amphioxus.

1999 ◽  
Vol 65 (3) ◽  
pp. 946-950 ◽  
Author(s):  
Yongmei Feng ◽  
Hoon Eng Khoo ◽  
Chit Laa Poh

ABSTRACT Two 3-hydroxybenzoate-inducible gentisate 1,2-dioxygenases were purified to homogeneity from Pseudomonas alcaligenes NCIB 9867 (P25X) and Pseudomonas putida NCIB 9869 (P35X), respectively. The estimated molecular mass of the purified P25X gentisate 1,2-dioxygenase was 154 kDa, with a subunit mass of 39 kDa. Its structure is deduced to be a tetramer. The pI of this enzyme was established to be 4.8 to 5.0. The subunit mass of P35X gentisate 1,2-dioxygenase was 41 kDa, and this enzyme was deduced to exist as a dimer, with a native molecular mass of about 82 kDa. The pI of P35X gentisate 1,2-dioxygenase was around 4.6 to 4.8. Both of the gentisate 1,2-dioxygenases exhibited typical saturation kinetics and had apparent Km s of 92 and 143 μM for gentisate, respectively. Broad substrate specificities were exhibited towards alkyl and halogenated gentisate analogs. Both enzymes had similar kinetic turnover characteristics for gentisate, with k cat/Km values of 44.08 × 104 s−1 M−1 for the P25X enzyme and 39.34 × 104 s−1M−1 for the P35X enzyme. Higherk cat/Km values were expressed by both enzymes against the substituted gentisates. Significant differences were observed between the N-terminal sequences of the first 23 amino acid residues of the P25X and P35X gentisate 1,2-dioxygenases. The P25X gentisate 1,2-dioxygenase was stable between pH 5.0 and 7.5, with the optimal pH around 8.0. The P35X enzyme showed a pH stability range between 7.0 and 9.0, and the optimum pH was also 8.0. The optimal temperature for both P25X and P35X gentisate 1,2-dioxygenases was around 50°C, but the P35X enzyme was more heat stable than that from P25X. Both enzymes were strongly stimulated by 0.1 mM Fe2+ but were completely inhibited by the presence of 5 mM Cu2+. Partial inhibition of both enzymes was also observed with 5 mM Mn2+, Zn2+, and EDTA.


2007 ◽  
Vol 54 (1) ◽  
pp. 159-166 ◽  
Author(s):  
Jiwei Liu ◽  
Xiaochao Xu ◽  
Jinzhi Liu ◽  
Jan Balzarini ◽  
Yongtin Luo ◽  
...  

The mannose-binding agglutinin from bulbs of Lycoris aurea (LAA) agglutinates rabbit but not human erythrocytes. The molecular mass of the monomer in SDS/PAGE is 12 kDa while the apparent molecular mass in gel filtration is 48 kDa, indicating that LAA is a homotetramer. The full-length cDNA of LAA contains 683 bp with an open reading frame encoding a protomer of 162 amino-acid residues. Hydrophobic Cluster Analysis and molecular modeling of the 109-residue mature polypeptide suggested a similar secondary and tertiary structure to those of Narcissus pseudonarcissus agglutinin (NPA). Molecular docking revealed that, besides the three mannose-binding sites common among Amaryllidaceae lectins, LAA also contains a fourth unique mannose-binding site formed by a tryptophan cluster. The existence of four mannose-binding sites in each monomer of LAA is very unusual and has only been reported for NPA earlier.


2014 ◽  
Vol 60 (9) ◽  
pp. 585-591 ◽  
Author(s):  
Yan Long ◽  
Sheng Yang ◽  
Zhixiong Xie ◽  
Li Cheng

The gene phhY encoding phenol hydroxylase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The gene phhY contained an open reading frame of 2130 bp encoding a polypeptide of 709 amino acid residues. From its sequence analysis, it is a member of a family of flavin-containing aromatic hydroxylases and shares 41% amino acid identity with phenol hydroxylase from Trichosporon cutaneum. The recombinant phenol hydroxylase exists as a homotetramer structure with a native molecular mass of 320 kDa. Recombinant phenol hydroxylase was insensitive to pH treatment; its optimum pH was at 7.6. The optimum temperature for the enzyme was 30 °C, and its activity was rapidly lost at temperatures above 60 °C. Under the optimal conditions with phenol as substrate, the Km and Vmax of recombinant phenol hydroxylase were 0.21 mmol·L–1 and 0.077 μmol·L–1·min−1, respectively. This is the first paper presenting the cloning and expression in E. coli of the phenol hydroxylase gene from C. tropicalis and the characterization of the recombinant phenol hydroxylase.


2004 ◽  
Vol 186 (2) ◽  
pp. 419-426 ◽  
Author(s):  
Isabel Veiga-Malta ◽  
Margarida Duarte ◽  
Márcia Dinis ◽  
Pedro Madureira ◽  
Paula Ferreira ◽  
...  

ABSTRACT Streptococcus sobrinus, one agent of dental caries, secretes a protein that induces lymphocyte polyclonal activation of the host as a mechanism of immune evasion. We have isolated from culture supernatants of this bacterium a protein with murine B-cell-stimulatory properties and subsequently cloned the relevant gene. It contains an open reading frame of 825 bp encoding a polypeptide with 275 amino acid residues and a molecular mass of 30 kDa. The protein displays high sequence homology with NAD+ synthetases from several organisms, including a conserved fingerprint sequence (SGGXD) characteristic of ATP pyrophosphatases. The polypeptide was expressed in Escherichia coli as a hexahistidine-tagged protein and purified in an enzymatically active form. The recombinant NAD+ synthetase stimulates murine B cells after in vitro treatment of spleen cell cultures, as demonstrated by its ability to induce up-regulation of the expression of CD69, an early marker of lymphocyte activation. Stimulation with the recombinant NAD+ synthetase was also observed with other B-cell markers, such as CD19+, B220+, and CD21+. Cell proliferation follows the activation induced by the recombinant NAD+ synthetase.


1985 ◽  
Vol 5 (10) ◽  
pp. 2684-2696
Author(s):  
D H Smith ◽  
D M Kegler ◽  
E B Ziff

We transiently expressed adenovirus type C E1a proteins in wild-type or mutant form from plasmid vectors which have different combinations of E1a and simian virus 40 enhancer elements and which contain the DNA replication origin of SV40 and can replicate in COS 7 cells. We measured the levels of E1a mRNA encoded by the vectors and the transition regulation properties of the protein products. Three vectors encoded equivalent levels of E1a mRNA in COS 7 cells: (i) a plasmid encoding the wt 289-amino acid E1a protein (this complemented the E1a deletion mutant dl312 for early region E2a expression under both replicative and nonreplicative conditions); (ii) a vector for the wt 243-amino acid E1a protein (this complemented dl312 weakly and only under conditions of high multiplicities of dl312); (iii) a mutant, pSVXL105, in which amino acid residues-38 through 44 of the 289-amino acid E1a protein (which includes two highly conserved residues) are replaced by 3 novel amino acids (this also complemented dl312 efficiently). A fourth vector, mutant pSVXL3 with which linker substitution shifts the reading frame to encode a truncated 70-amino acid fragment from the amino terminus of the 289-amino acid protein, was unable to complement dl312. Surprisingly, pSVXL3 overexpressed E1a mRNA approximately 30-fold in COS 7 cells in comparison with the other vectors. The pSVXL3 overexpression could be reversed by cotransfection with a wt E1a vector. We suggest that wt E1a proteins regulate the levels of their own mRNAs through the recently described transcription repression functions of the 289- and 243-amino acid E1a protein products and that pSVXL3 fails to autoregulate negatively.


2001 ◽  
Vol 204 (16) ◽  
pp. 2803-2816 ◽  
Author(s):  
P. K. LOI ◽  
S. A. EMMAL ◽  
Y. PARK ◽  
N. J. TUBLITZ

SUMMARYThe crustacean cardioactive peptide (CCAP) gene was isolated from the tobacco hawkmoth Manduca sexta. The gene has an open reading frame of 125 amino acid residues containing a single, complete copy of CCAP. Analysis of the gene structure revealed three introns interrupting the coding region. A comparison of the M. sexta CCAP gene with the Drosophila melanogaster genome database reveals significant similarities in sequence and gene structure.The spatial and temporal expression patterns of the CCAP gene in the M. sexta central nervous system were determined in all major post-embryonic stages using in situ hybridization techniques. The CCAP gene is expressed in a total of 116 neurons in the post-embryonic M. sextacentral nervous system. Nine pairs of cells are observed in the brain, 4.5 pairs in the subesophageal ganglion, three pairs in each thoracic ganglion(T1-T3), three pairs in the first abdominal ganglion (A1), five pairs each in the second to sixth abdominal ganglia (A2-A6) and 7.5 pairs in the terminal ganglion. The CCAP gene is expressed in every ganglion in each post-embryonic stage, except in the thoracic ganglia of first- and second-instar larvae. The number of cells expressing the CCAP gene varies during post-embryonic life,starting at 52 cells in the first instar and reaching a maximum of 116 shortly after pupation. One set of thoracic neurons expressing CCAP mRNA shows unusual variability in expression levels immediately prior to larval ecdysis. Using previously published CCAP immunocytochemical data, it was determined that 91 of 95 CCAP-immunopositive neurons in the M. sexta central nervous system also express the M. sexta CCAP gene, indicating that there is likely to be only a single CCAP gene in M. sexta.


1992 ◽  
Vol 12 (7) ◽  
pp. 2958-2966
Author(s):  
M Bun-Ya ◽  
S Harashima ◽  
Y Oshima

We have found an open reading frame which is 1.1 kb upstream of PHO84 (which encodes a Pi transporter) and is transcribed from the opposite strand. In Saccharomyces cerevisiae, this gene is distal to the TUB3 locus on the left arm of chromosome XIII and is named GTR1. GTR1 encodes a protein consisting of 310 amino acid residues containing, in its N-terminal region, the characteristic tripartite consensus elements for binding GTP conserved in GTP-binding proteins, except for histidine in place of a widely conserved aspargine residue in element III. Disruption of the GTR1 gene resulted in slow growth at 30 degrees C and no growth at 15 degrees C; other phenotypes resembled those of pho84 mutants and included constitutive synthesis of repressible acid phosphatase, reduced Pi transport activity, and resistance to arsenate. The latter phenotypes were shown to be due to a defect in Pi uptake, and the Gtr1 protein was found to be functionally associated with the Pho84 Pi transporter. Recombination between chromosome V (at the URA3 locus) and chromosome XIII (in the GTR1-PHO84-TUB3 region) by using a plasmid-encoded site-specific recombination system indicated that the order of these genes was telomere-TUB3-PHO84-GTR1-CENXIII.


1987 ◽  
Vol 245 (2) ◽  
pp. 595-603 ◽  
Author(s):  
G J Price ◽  
P Jones ◽  
M D Davison ◽  
B Patel ◽  
I C Eperon ◽  
...  

A chick-embryo fibroblast lambda gt11 cDNA library was screened with affinity-purified antibodies to chick gizzard vinculin. One recombinant was purified to homogeneity and the fusion protein expressed in Escherichia coli strain C600. The fusion protein was unstable, but polypeptides that reacted with vinculin antibodies, but not non-immune immunoglobulin, were detected by Western blotting. The recombinant contained a single EcoRI fragment of 2891 bp with a single open reading frame. The deduced protein sequence could be aligned with that of six CNBr-cleavage peptides and two tryptic peptides derived from chicken gizzard vinculin. AUG-247 has tentatively been identified as the initiation codon, as it is contained within the consensus sequence for initiation sites of higher eukaryotes. The cDNA lacks 3′ sequence and encodes 74% of the vinculin sequence, presuming the molecular mass of vinculin to be 130,000 Da. Analysis of the deduced sequence showed no homologies with other protein sequences, but it does display a triple internal repeat of 112 amino acid residues covering residues 259-589. The sequences surrounding the seven tyrosine residues in the available sequence were aligned with the tyrosine autophosphorylation consensus sequence found in protein tyrosine kinases. Tyr-822 showed a good match to this consensus, and may represent one of the two major sites of tyrosine phosphorylation by pp60v-sre. Northern blots showed that the 2.89 kb vinculin cDNA hybridized to one size of mRNA (approx. 7 kb) in chick-embryo fibroblasts, chick smooth muscle and chick skeletal muscle. Southern blots revealed multiple hybridizing bands in genomic DNA.


2003 ◽  
Vol 50 (1) ◽  
pp. 269-278
Author(s):  
Amr M Shabaan ◽  
Magdy M Mohamed ◽  
Mohga S Abdallah ◽  
Hayat M Ibrahim ◽  
Amr M Karim

Two Schistosoma mansoni cDNA clones 30S and 1H were identified by immunoscreening of sporocyst lambdagt11 library and by random sequencing of clones from lambdaZap libraries, respectively. Clone 30S was one of 30 clones identified by an antibody raised against tegument of 3-h schistosomules. The clone was found to encode an 81 amino-acid protein fragment. It was expressed in Escherichia coli as a fusion protein of calculated molecular mass of about 35 kDa with C-terminus of Schistosoma japonicum glutathione-S-transferase (Sj26; about 26 kDa). The recombinant fusion protein was specifically recognized by serum of rabbits immunized with irradiated cercariae. Clone 1H is one of 76 expressed sequence tags derived from an adult worm library. It encodes the complete sequence of a tegumental membrane protein, Sm13. The 104 amino-acid open reading frame encodes a protein with a calculated molecular mass of about 11.9 kDa. Clone 1H was expressed in E. coli as an insoluble fusion protein with Sj26 of about 40 kDa. In Western blots, the fusion protein was recognized by serum from rabbits vaccinated with irradiated cercariae but not by preimmune rabbit sera. The cloning, characterization and expression of those proteins are therefore potentially usefull for vaccine development.


1994 ◽  
Vol 41 (4) ◽  
pp. 467-471 ◽  
Author(s):  
A Dzikowska ◽  
J P Le Caer ◽  
P Jonczyk ◽  
P Wëgleński

Arginase (EC 3.5.3.1) of Aspergillus nidulans, the enzyme which enables the fungus to use arginine as the sole nitrogen source was purified to homogeneity. Molecular mass of the purified arginase subunit is 40 kDa and is similar to that reported for the Neurospora crassa (38.3 kDa) and Saccharomyces cerevisiae (39 kDa) enzymes. The native molecular mass of arginase is 125 kDa. The subunit/native molecular mass ratio suggests a trimeric form of the protein. The arginase protein was cleaved and partially sequenced. Two out of the six polypeptides sequenced show a high degree of homology to conserved domains in arginases from other species.


Sign in / Sign up

Export Citation Format

Share Document