scholarly journals Neuroprotective effect of Danshensu derivatives as anti-ischaemia agents on SH-SY5Y cells and rat brain

2013 ◽  
Vol 33 (4) ◽  
Author(s):  
Sunisa Seetapun ◽  
Jia Yaoling ◽  
Yang Wang ◽  
Yi Zhun Zhu

Novel Danshensu derivatives (3–8) were designed and synthesized to improve bioactivity based on the strategy of ‘medicinal chemical hybridization’. Our previous studies indicated that these compounds exhibited noticeable cardioprotective activities. Here, we investigate whether these novel Danshensu derivatives exert neuroprotective activities. An in vitro study revealed that these compounds could increase cell viability and reduce LDH (lactate dehydrogenase) leakage. Moreover, Danshensu-cysteine derivative compounds 6 and 8 could significantly inhibit lipid peroxidation of cell membrane and regulate the expression of apoptosis-related protein (Bcl-2, Bax and caspase 3). An in vivo study demonstrated that treatment with compound 6 at 30 mg/kg markedly decreased the infarct volume of MCAO (middle cerebral artery occlusion) insulted rat brain. Furthermore, treatment with compound 6 showed the antioxidant capacity by increasing the activity of SOD (superoxide dismutase) and GPx (glutathione peroxidase) and decreasing the level of MDA (malondialdehyde) and the ROS (reactive oxygen species) production significantly. These results suggested that these novel conjugates exert significant neuroprotective effects as anti-ischaemia agents and those with high potential merit further investigation.

2003 ◽  
Vol 23 (10) ◽  
pp. 1160-1167 ◽  
Author(s):  
Kenneth B Mackay ◽  
Sarah A Loddick ◽  
Gregory S Naeve ◽  
Alicia M Vana ◽  
Gail M Verge ◽  
...  

The role of brain insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in neuroprotection was further investigated using in vitro and in vivo models of cerebral ischemia by assessing the effects of IGF-I, IGF-II, and high affinity IGFBP ligand inhibitors (the peptide [Leu24, 59, 60, Ala31]hIGF-I (IGFBP-LI) and the small molecule NBI-31772 (1-(3,4-dihydroxybenzoyl)-3-hydroxycarbonyl-6, 7-dihydroxyisoquinoline), which pharmacologically displace and elevate endogenous, bioactive IGFs from IGFBPs. Treatment with IGF-I, IGF-II, or IGFBP-LI (2 μg/mL) significantly ( P < 0.05) reduced CA1 damage in organotypic hippocampal cultures resulting from 35 minutes of oxygen and glucose deprivation by 71%, 60%, and 40%, respectively. In the subtemporal middle cerebral artery occlusion (MCAO) model of focal ischemia, intracerebroventricular (icv) administration of IGF-I and IGF-II at the time of artery occlusion reduced ischemic brain damage in a dose-dependent manner, with maximum reductions in total infarct size of 37% ( P < 0.01) and 38% ( P < 0.01), respectively. In this model of MCAO, icv administration of NBI-31772 at the time of ischemia onset also dose-dependently reduced infarct size, and the highest dose (100 μg) significantly reduced both total (by 40%, P < 0.01) and cortical (by 43%, P < 0.05) infarct volume. In the intraluminal suture MCAO model, administration of NBI-31772 (50 μg icv) at the time of artery occlusion reduced both cortical infarct volume (by 40%, P < 0.01) and brain swelling (by 24%, P < 0.05), and it was still effective when treatment was delayed up to 3 hours after the induction of ischemia. These results further define the neuroprotective properties of IGFs and IGFBP ligand inhibitors in experimental models of cerebral ischemia.


2021 ◽  
pp. 1-13
Author(s):  
Claire Rühlmann ◽  
David Dannehl ◽  
Marcus Brodtrück ◽  
Andrew C. Adams ◽  
Jan Stenzel ◽  
...  

Background: To date, there are no effective treatments for Alzheimer’s disease (AD). Thus, a significant need for research of therapies remains. Objective: One promising pharmacological target is the hormone fibroblast growth factor 21 (FGF21), which is thought to be neuroprotective. A clinical candidate for medical use could be the FGF21 analogue LY2405319 (LY), which has a specificity and potency comparable to FGF21. Methods: The present study investigated the potential neuroprotective effect of LY via PPARγ/apoE/abca1 pathway which is known to degrade amyloid-β (Aβ) plaques by using primary glial cells and hippocampal organotypic brain slice cultures (OBSCs) from 30- and 50-week-old transgenic APPswe/PS1dE9 (tg) mice. By LY treatment of 52-week-old tg mice with advanced Aβ deposition, we further aimed to elaborate the effect of LY on AD pathology in vivo. Results: LY application to primary glial cells caused an upregulation of pparγ, apoE, and abca1 mRNA expression and significantly decreased number and area of Aβ plaques in OBSCs. LY treatment in tg mice increased cerebral [18F] FDG uptake and N-acetylaspartate/creatine ratio indicating enhanced neuronal activity and integrity. Although LY did not reduce the number of Aβ plaques in tg mice, the number of iba1-positive cells was significantly decreased indicating reduced microgliosis. Conclusion: These data identified LY in vitro as an activator of Aβ degrading genes leading to cerebral Aβ load amelioration in early and late AD pathology. Although Aβ plaque reduction by LY failed in vivo, LY may be used as therapeutic agent to treat AD-related neuroinflammation and impaired neuronal integrity.


2018 ◽  
Vol 39 (12) ◽  
pp. 2406-2418 ◽  
Author(s):  
Su Jing Chan ◽  
Hui Zhao ◽  
Kazuhide Hayakawa ◽  
Chou Chai ◽  
Chong Teik Tan ◽  
...  

Modulator of apoptosis 1 (MOAP-1) is a Bax-associating protein highly enriched in the brain. In this study, we examined the role of MOAP-1 in promoting ischemic injuries following a stroke by investigating the consequences of MOAP-1 overexpression or deficiency in in vitro and in vivo models of ischemic stroke. MOAP-1 overexpressing SH-SY5Y cells showed significantly lower cell viability following oxygen and glucose deprivation (OGD) treatment when compared to control cells. Consistently, MOAP-1−/− primary cortical neurons were observed to be more resistant against OGD treatment than the MOAP-1+/+ primary neurons. In the mouse transient middle cerebral artery occlusion (tMCAO) model, ischemia triggered MOAP-1/Bax association, suggested activation of the MOAP-1-dependent apoptotic cascade. MOAP-1−/− mice were found to exhibit reduced neuronal loss and smaller infarct volume 24 h after tMCAO when compared to MOAP-1+/+ mice. Correspondingly, MOAP-1−/− mice also showed better integrity of neurological functions as demonstrated by their performance in the rotarod test. Therefore, both in vitro and in vivo data presented strongly support the conclusion that MOAP-1 is an important apoptotic modulator in ischemic injury. These results may suggest that a reduction of MOAP-1 function in the brain could be a potential therapeutic approach in the treatment of acute stroke.


Author(s):  
C.F. Veloso ◽  
A.K. Machado ◽  
F.C. Cadoná ◽  
V.F. Azzolin ◽  
I.B.M. Cruz ◽  
...  

Background: Vincristine (VCR) is not a specific chemotherapeutic drug, responsible for cause several side effects. In this sense, many natural products have been studied to reduce this problem. Objetives: To examine the guarana neuroprotective effect in mice brain and cerebellum cells against vincristine (VCR) exposition. Design: An in vitro study was performed using mice brain and cerebellum mice in monolayer culture. First, cells were exposed to VCR (0.009 µM for 24 hours and 0.0007 µM for 72 hours) to measure the cytotoxicity effect. Also, the cellular effect of hydroalcoholic extract of guarana (10; 30; 100 and 300 μg/mL) was evaluated in the same cells in 24 and 72 hours. After that, cells were exposed to VCR and guarana extract to evaluate the neuroprotective effect of guarana. Measurements: Cell viability was analyzed by MTT, Free dsDNA and LHD Assays. Moreover, metabolism oxidative profile was evaluated by reactive oxygen species (ROS), lipoperoxidation (LPO) and catalase (CAT) levels through DCFH-DA, TBARS and Catalase Activity Assays, respectively. Results: Our findings revealed that VCR caused neuronal cytotoxicity by reducing cell viability and increasing ROS and LPO levels. On the other hand, guarana did not cause cell damage in none of tested concentrations. In addition, guarana exhibited a notable protective effect on brain and cerebellum cells exposed to VCR by increasing cell viability, stimulating CAT activity, reducing levels of ROS and LPO. Conclusions: In this sense, guaraná is a remarkable antioxidant fruit that could be a target in new therapies development to reduce VCR neurotoxicity.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Chen ◽  
Haiyan Sun ◽  
Liyong Huang ◽  
Juxiang Li ◽  
Wenke Zhou ◽  
...  

Redox homeostasis has been implicated in subarachnoid hemorrhage (SAH). As a result, antioxidants and/or free radical scavengers have become an important therapeutic modality. Considering that radix trichosanthis (RT) saponins exhibited strong antioxidant ability bothin vivoandin vitro, the present study aimed to reveal whether the neuroprotective activities of RT saponins were mediated by p38/p53 signal pathway after SAH. An established SAH model was used and superoxide dismutase (SOD), malondialdehyde (MDA), induced nitric oxide synthase (iNOS), nitric oxide (NO), lactate dehydrogenase (LDH), p-p38, and p53 activation were detected after 48 h of SAH. The results showed that RT saponins inhibited iNOS expression to restore NO to basal level. Moreover, compared with Cu/Zn-SOD, RT saponins (2 mg/kg/d dosage) significantly increased Mn-SOD activity after SAH. Accompanied with lowered NO and elevated SOD, decreased p38 phosphorylation and p53 activities were observed, especially for RT saponins at 2 mg/kg/d dosage. In this setting, the neurological outcome was also improved with less neuronal cells damage after RT saponins pretreatment. Our findings demonstrated the beneficial effects of RT saponins in enhancing neuroprotective effects by deducing iNOS activity, normalizing SOD level, and inhibiting p-p38 and p53 expression, hence offering significant therapeutic implications for SAH.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Qun Shan ◽  
Jun Lu ◽  
Yuanlin Zheng ◽  
Jing Li ◽  
Zhong Zhou ◽  
...  

Purple sweet potato color (PSPC), a naturally occurring anthocyanin, has a powerful antioxidant activity in vitro and in vivo. This study explores whether PSPC has the neuroprotective effect on the aging mouse brain induced by D-galactose (D-gal). The mice administrated with PSPC (100 mg/kg.day, 4 weeks, from 9th week) via oral gavage showed significantly improved behavior performance in the open field and passive avoidance test compared with D-gal-treated mice (500 mg/kg.day, 8 weeks). We further investigate the mechanism involved in neuroprotective effects of PSPC on mouse brain. Interestingly, we found, PSPC decreased the expression level of glial fibrillary acidic protein (GFAP), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), inhibited nuclear translocation of nuclear factor-kappaB (NF-κB), increased the activity of copper/zinc superoxide dismutase (Cu/Zn-SOD) and catalase (CAT), and reduced the content of malondialdehyde (MDA), respectively. Our data suggested that PSPC attenuated D-gal-induced cognitive impairment partly via enhancing the antioxidant and anti-inflammatory capacity.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Irini Papazian ◽  
Eleni Tsoukala ◽  
Athena Boutou ◽  
Maria Karamita ◽  
Konstantinos Kambas ◽  
...  

Abstract Background During inflammatory demyelination, TNF receptor 1 (TNFR1) mediates detrimental proinflammatory effects of soluble TNF (solTNF), whereas TNFR2 mediates beneficial effects of transmembrane TNF (tmTNF) through oligodendroglia, microglia, and possibly other cell types. This model supports the use of selective inhibitors of solTNF/TNFR1 as anti-inflammatory drugs for central nervous system (CNS) diseases. A potential obstacle is the neuroprotective effect of solTNF pretreatment described in cultured neurons, but the relevance in vivo is unknown. Methods To address this question, we generated mice with neuron-specific depletion of TNFR1, TNFR2, or inhibitor of NF-κB kinase subunit β (IKKβ), a main downstream mediator of TNFR signaling, and applied experimental models of inflammatory demyelination and acute and preconditioning glutamate excitotoxicity. We also investigated the molecular and cellular requirements of solTNF neuroprotection by generating astrocyte-neuron co-cultures with different combinations of wild-type (WT) and TNF and TNFR knockout cells and measuring N-methyl-d-aspartate (NMDA) excitotoxicity in vitro. Results Neither neuronal TNFR1 nor TNFR2 protected mice during inflammatory demyelination. In fact, both neuronal TNFR1 and neuronal IKKβ promoted microglial responses and tissue injury, and TNFR1 was further required for oligodendrocyte loss and axonal damage in cuprizone-induced demyelination. In contrast, neuronal TNFR2 increased preconditioning protection in a kainic acid (KA) excitotoxicity model in mice and limited hippocampal neuron death. The protective effects of neuronal TNFR2 observed in vivo were further investigated in vitro. As previously described, pretreatment of astrocyte-neuron co-cultures with solTNF (and therefore TNFR1) protected them against NMDA excitotoxicity. However, protection was dependent on astrocyte, not neuronal TNFR1, on astrocyte tmTNF-neuronal TNFR2 interactions, and was reproduced by a TNFR2 agonist. Conclusions These results demonstrate that neuronal TNF receptors perform fundamentally different roles in CNS pathology in vivo, with neuronal TNFR1 and IKKβ promoting microglial inflammation and neurotoxicity in demyelination, and neuronal TNFR2 mediating neuroprotection in excitotoxicity. They also reveal that previously described neuroprotective effects of solTNF against glutamate excitotoxicity in vitro are indirect and mediated via astrocyte tmTNF-neuron TNFR2 interactions. These results consolidate the concept that selective inhibition of solTNF/TNFR1 with maintenance of TNFR2 function would have combined anti-inflammatory and neuroprotective properties required for safe treatment of CNS diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe-Qi Xu ◽  
Jing-Jing Zhang ◽  
Ni Kong ◽  
Guang-Yu Zhang ◽  
Ping Ke ◽  
...  

The α7 nicotinic acetylcholine receptor (α7nAChR) belongs to the superfamily of cys loop cationic ligand-gated channels, which consists of homogeneous α7 subunits. Although our lab found that activation of α7nAChR could alleviate ischemic stroke, the mechanism is still unknown. Herein, we explored whether autophagy is involved in the neuroprotective effect mediated by α7nAChR in ischemic stroke. Transient middle cerebral artery occlusion (tMCAO) and oxygen and glucose deprivation (OGD/R) exposure were applied to in vivo and in vitro models of ischemic stroke, respectively. Neurological deficit score and infarct volume were used to evaluate outcomes of tMCAO in the in vivo study. Autophagy-related proteins were detected by Western blot, and autophagy flux was detected by using tandem fluorescent mRFP-GFP-LC3 lentivirus. At 24 h after tMCAO, α7nAChR knockout mice showed worse neurological function and larger infarct volume than wild-type mice. PNU282987, an α7nAChR agonist, protected against OGD/R-induced neuronal injury, enhanced autophagy, and promoted autophagy flux. However, the beneficial effects of PNU282987 were eliminated by 3-methyladenine (3-MA), an autophagy inhibitor. Moreover, we found that PNU282987 treatment could activate the AMPK-mTOR-p70S6K signaling pathway in the in vitro study, while the effect was attenuated by compound C, an AMPK inhibitor. Our results demonstrated that the beneficial effect on neuronal survival via activation of α7nAChR was associated with enhanced autophagy, and the AMPK-mTOR-p70S6K signaling pathway was involved in α7nAChR activation–mediated neuroprotection.


2021 ◽  
Author(s):  
Mandana Lotfi ◽  
Sohrab Kazemi ◽  
Anahita Ebrahimpour ◽  
Fereshteh Pourabdolhossein ◽  
Leila Satarian ◽  
...  

Abstract Nonylphenol (NP), a well-known endocrine-disrupter chemical, has several harmful effects on the central nervous system including neuroendocrine disruption, cognitive impairment, and neurotoxicity. Thymoquinone (TQ) is a main bioactive compound in the black seeds of Nigella sativa that has antioxidant, anti-inflammatory, and neuroprotective properties. Here, we investigated the neuroprotective effect of TQ against NP-induced memory deficit and neurotoxicity in rats. To induce memory impairment, NP (25 mg/kg) was used as gavage in male Wistar rats for 21 days. TQ (2.5, 5 and 10mg/kg) was intraperitoneally administered in NP-treated animals. The morris water maze test was performed to assess spatial learning and memory. The hippocampal tissues were isolated from the brain for histopathological evaluation. Biochemical, molecular and cellular tests were performed to quantify oxidant (malondialdehyde; MDA)/antioxidant (superoxide dismutase (SOD), total antioxidant capacity (TAC) and reduced glutathione (GSH) parameters as well as markers for astrocytic activation (glial fibrillary acidic protein; GFAP) and neuronal death (alpha-synuclein; α-syn). Results showed TQ (5 mg/kg) significantly improved NP-induced memory impairment. Histological data revealed a significant increase in the number of necrotic cells in hippocampus, and TQ treatment markedly decreased this effect. The GSH and TAC levels were significantly increased in TQ-treated groups compared to NP group. The molecular analysis indicated that NP increased GFAP and decreased α-syn expression and TQ treatment did the reverse. In vitro study in astrocytes isolated from mice brain showed that TQ significantly increased cell viability in NP-induced cytotoxicity. This study strongly indicates that TQ has neuroprotective effects on NP-induced neurotoxicity through reducing oxidative damages and neuroinflammation.


2021 ◽  
Vol 118 (32) ◽  
pp. e2018850118
Author(s):  
Hiroo Takahashi ◽  
Ryo Asahina ◽  
Masayuki Fujioka ◽  
Takeshi K. Matsui ◽  
Shigeki Kato ◽  
...  

Ischemic stroke, which results in loss of neurological function, initiates a complex cascade of pathological events in the brain, largely driven by excitotoxic Ca2+ influx in neurons. This leads to cortical spreading depolarization, which induces expression of genes involved in both neuronal death and survival; yet, the functions of these genes remain poorly understood. Here, we profiled gene expression changes that are common to ischemia (modeled by middle cerebral artery occlusion [MCAO]) and to experience-dependent activation (modeled by exposure to an enriched environment [EE]), which also induces Ca2+ transients that trigger transcriptional programs. We found that the activity-dependent transcription factor Npas4 was up-regulated under MCAO and EE conditions and that transient activation of cortical neurons in the healthy brain by the EE decreased cell death after stroke. Furthermore, both MCAO in vivo and oxygen-glucose deprivation in vitro revealed that Npas4 is necessary and sufficient for neuroprotection. We also found that this protection involves the inhibition of L-type voltage-gated Ca2+ channels (VGCCs). Next, our systematic search for Npas4-downstream genes identified Gem, which encodes a Ras-related small GTPase that mediates neuroprotective effects of Npas4. Gem suppresses the membrane localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby protecting neurons from excitotoxic death after in vitro and in vivo ischemia. Collectively, our findings indicate that Gem expression via Npas4 is necessary and sufficient to promote neuroprotection in the injured brain. Importantly, Gem is also induced in human cerebral organoids cultured under an ischemic condition, revealing Gem as a new target for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document