organotypic brain slice
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Beatriz G. Perez-Nievas ◽  
Louisa Johnson ◽  
Paula Beltran-Lobo ◽  
Martina M. Hughes ◽  
Luciana Gammallieri ◽  
...  

Abstract Background Pathological interactions between β-amyloid (Aβ) and tau drive synapse loss and cognitive decline in Alzheimer’s disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognised as contributing to early phases of disease. However, the contribution of astrocytes to Aβ-induced synaptotoxicity in AD is not well understood. Methods We stimulated mouse and human astrocytes with conditioned medium containing concentrations and species of human Aβ that mimic those in human AD brain. Medium from stimulated astrocytes was collected and immunodepleted of Aβ before being added to naïve rodent or human neuron cultures. A cytokine, identified in unbiased screens of stimulated astrocyte media and in postmortem human AD brain lysates was also applied to neurons, including those pre-treated with a chemokine receptor antagonist. Tau mislocalisation, synaptic markers and dendritic spine numbers were measured in cultured neurons and organotypic brain slice cultures. Results We found that conditioned medium from stimulated astrocytes induces exaggerated synaptotoxicity that is recapitulated following spiking of neuron culture medium with recombinant C–X–C motif chemokine ligand-1 (CXCL1), a chemokine upregulated in AD brain. Antagonism of neuronal C–X–C motif chemokine receptor 2 (CXCR2) prevented synaptotoxicity in response to CXCL1 and Aβ-stimulated astrocyte secretions. Conclusions Our data indicate that astrocytes exacerbate the synaptotoxic effects of Aβ via interactions of astrocytic CXCL1 and neuronal CXCR2 receptors, highlighting this chemokine–receptor pair as a novel target for therapeutic intervention in AD.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0252635
Author(s):  
Sara Elfarrash ◽  
Nanna Møller Jensen ◽  
Nelson Ferreira ◽  
Sissel Ida Schmidt ◽  
Emil Gregersen ◽  
...  

Accumulation of aggregated alpha-synuclein (α-syn) is believed to play a pivotal role in the pathophysiology of Parkinson’s disease (PD) and other synucleinopathies. As a key constituent of Lewy pathology, more than 90% of α-syn in Lewy bodies is phosphorylated at serine-129 (pS129) and hence, it is used extensively as a marker for α-syn pathology. However, the exact role of pS129 remains controversial and the kinase(s) responsible for the phosphorylation have yet to be determined. In this study, we investigated the effect of Polo-like kinase 2 (PLK2) inhibition on formation of pS129 using an ex vivo organotypic brain slice model of synucleinopathy. Our data demonstrated that PLK2 inhibition has no effect on α-syn aggregation, pS129 or inter-neuronal spreading of the aggregated α-syn seen in the organotypic slices. Instead, PLK2 inhibition reduced the soluble pS129 level in the nuclei. The same finding was replicated in an in vivo mouse model of templated α-syn aggregation and in human dopaminergic neurons, suggesting that PLK2 is more likely to be involved in S129-phosphorylation of the soluble physiological fraction of α-syn. We also demonstrated that reduction of nuclear pS129 following PLK2 inhibition for a short time before sample collection improves the signal-to-noise ratio when quantifying pS129 aggregate pathology.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1582
Author(s):  
Brigitta M. Laksono ◽  
Diana N. Tran ◽  
Ivanela Kondova ◽  
Harry G. H. van Engelen ◽  
Samira Michels ◽  
...  

Measles virus (MV) and canine distemper virus (CDV) are closely related members of the family Paramyxoviridae, genus Morbillivirus. MV infection of humans and non-human primates (NHPs) results in a self-limiting disease, which rarely involves central nervous system (CNS) complications. In contrast, infection of carnivores with CDV usually results in severe disease, in which CNS complications are common and the case-fatality rate is high. To compare the neurovirulence and neurotropism of MV and CDV, we established a short-term organotypic brain slice culture system of the olfactory bulb, hippocampus, or cortex obtained from NHPs, dogs, and ferrets. Slices were inoculated ex vivo with wild-type-based recombinant CDV or MV expressing a fluorescent reporter protein. The infection level of both morbilliviruses was determined at different times post-infection. We observed equivalent infection levels and identified microglia as main target cells in CDV-inoculated carnivore and MV-inoculated NHP brain tissue slices. Neurons were also susceptible to MV infection in NHP brain slice cultures. Our findings suggest that MV and CDV have comparable neurotropism and intrinsic capacity to infect CNS-resident cells of their natural host species.


2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii22-iii22
Author(s):  
Anna L Price ◽  
Russell Holden ◽  
James J H Park ◽  
Denise Dunn ◽  
Brendan Koch ◽  
...  

Abstract Radiation therapy is a mainstay in the treatment of brain metastasis, yet some tumors are resistant, and elsewhere brain recurrence outside the radiation field is common. Phototherapy using UV light-activated compounds can both kill cancer cells directly and trigger an immune response to extend tumor control. Poor penetration depth of ultraviolet light, however, has limited this treatment to superficial tumors. High-energy photon beams create high energy electrons within the patient which in turn produce Cherenkov radiation in the UV spectrum while traveling through tissue. Given that this Cherenkov radiation is generated deep within the patient and has the ability to activate photosensitive compounds, we therefore developed a platform to test this phenomenon to enhance radiation therapy for brain metastasis. We first tested UV-activated psoralen derivatives in combination with UV light in vitro for activity against murine 4T1 breast cancer cells, and then irradiated an ex vivo organotypic brain slice platform using a high energy linear accelerator to generate Cherenkov radiation. We tested the survival of 4T1 cells expressing fluorescent and bioluminescent reports in the presence and absence of these psoralen compounds in this ex vivo brain metastasis model. 8-methoxypsoralen (8-MOP) and 4’-Aminomethyltrioxsalen hydrochloride (AMT) both showed 365nm UVA light-specific cell killing in vitro. We optimized AMT cell loading (1 hour) and concentrations [1μM] AMT to maximize cytotoxicity. Testing of AMT using the organotypic brain slice platform and high-energy irradiation to generate Cherenkov-UV light demonstrated similar enhanced cell death of 4T1 cells despite high baseline levels of radiation-induced tumor cell kill. Cherenkov radiation-induced photo-activation of AMT improved cell killing in an ex vivo model of breast cancer brain metastasis. This application holds promise for the re-treatment of refractory tumors with high-energy, low dose radiation, and enhanced elsewhere brain metastasis control through activation of the immune system.


Author(s):  
Julia Gerstmeier ◽  
Anna-Lena Possmayer ◽  
Süleyman Bozkurt ◽  
Marina E. Hoffmann ◽  
Ivan Dikic ◽  
...  

: Glioblastoma (GBM) is the most common and most aggressive primary brain tumor with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evi-dence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infil-trative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the ex-pression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show using in vitro limiting dilution assays, quantita-tive real-time PCR and ex vivo adult organotypic brain slice transplantation cultures that thera-peutic doses of calcitriol, the hormonally active form of vitamin D3, reduces stemness to varying extent in a panel of investigated GSC lines and effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to com-pletely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in fol-low-up studies.


2021 ◽  
Author(s):  
Sara Elfarrash ◽  
Nanna Møller Jensen ◽  
Nelson Ferreira ◽  
Sissel Ida Schmidt ◽  
Emil Gregersen ◽  
...  

Accumulation of aggregated alpha-synuclein (α-syn) is believed to play a pivotal role in the pathophysiology of Parkinson’s disease (PD) and other synucleinopathies. α-Syn is a key constituent protein of  Lewy pathology, and α-syn phosphorylated at serine-129 (pS129) constitutes more than 90% of α-syn in Lewy bodies and hence, it is used extensively as a pathological marker for the aggregated form of α-syn. However, the exact role of pS129 remains controversial as well as the kinase(s) responsible for the phosphorylation. In this study, we investigated the effect of Polo-like kinase 2 (PLK2) inhibition on formation of pS129 using ex-vivo organotypic brain slice model of synucleinopathy. Our data demonstrated that PLK2 inhibition has no effect on α-syn aggregation, pS129 or inter-neuronal spreading of the aggregated α-syn seen in the organotypic slices. Instead, PLK2 inhibition reduced the soluble nuclear pS129 level confined in the nuclei. The same finding was replicated in an in-vivo mouse models of templated α-syn aggregation and human dopaminergic neurons, suggesting that PLK2 is more likely to be involved in S129 phosphorylation of soluble non-pathology related fraction of α-syn. We also demonstrated that reduction of nuclear pS129 but not the aggregates specific pS129 following PLK2 inhibition for a short time before sample collection improves the signal to noise ratio when quantifying pS129 aggregate pathology.


2021 ◽  
pp. 1-13
Author(s):  
Claire Rühlmann ◽  
David Dannehl ◽  
Marcus Brodtrück ◽  
Andrew C. Adams ◽  
Jan Stenzel ◽  
...  

Background: To date, there are no effective treatments for Alzheimer’s disease (AD). Thus, a significant need for research of therapies remains. Objective: One promising pharmacological target is the hormone fibroblast growth factor 21 (FGF21), which is thought to be neuroprotective. A clinical candidate for medical use could be the FGF21 analogue LY2405319 (LY), which has a specificity and potency comparable to FGF21. Methods: The present study investigated the potential neuroprotective effect of LY via PPARγ/apoE/abca1 pathway which is known to degrade amyloid-β (Aβ) plaques by using primary glial cells and hippocampal organotypic brain slice cultures (OBSCs) from 30- and 50-week-old transgenic APPswe/PS1dE9 (tg) mice. By LY treatment of 52-week-old tg mice with advanced Aβ deposition, we further aimed to elaborate the effect of LY on AD pathology in vivo. Results: LY application to primary glial cells caused an upregulation of pparγ, apoE, and abca1 mRNA expression and significantly decreased number and area of Aβ plaques in OBSCs. LY treatment in tg mice increased cerebral [18F] FDG uptake and N-acetylaspartate/creatine ratio indicating enhanced neuronal activity and integrity. Although LY did not reduce the number of Aβ plaques in tg mice, the number of iba1-positive cells was significantly decreased indicating reduced microgliosis. Conclusion: These data identified LY in vitro as an activator of Aβ degrading genes leading to cerebral Aβ load amelioration in early and late AD pathology. Although Aβ plaque reduction by LY failed in vivo, LY may be used as therapeutic agent to treat AD-related neuroinflammation and impaired neuronal integrity.


2021 ◽  
Vol 141 (3) ◽  
pp. 359-381 ◽  
Author(s):  
Cara L. Croft ◽  
Marshall S. Goodwin ◽  
Daniel H. Ryu ◽  
Christian B. Lessard ◽  
Giancarlo Tejeda ◽  
...  

AbstractAccumulation of the tau protein in fibrillar intracellular aggregates is a defining feature of multiple neurodegenerative diseases collectively referred to as tauopathies. Despite intensive study of tau, there is limited information on the formation and clearance dynamics of tau inclusions. Using rAAV vectors to mediate expression of Dendra2-tagged human wild-type, P301L and pro-aggregant P301L/S320F tau proteins, with and without the addition of exogenous tau fibrillar seeds, we evaluated tau inclusion dynamics in organotypic brain slice culture (BSC) models using long-term optical pulse labeling methodology. Our studies reveal that tau inclusions typically form in 12–96 h in tauopathy BSC models. Unexpectedly, we demonstrate appreciable turnover of tau within inclusions with an average half-life of ~ 1 week when inclusions are newly formed. When BSCs with inclusions are aged in culture for extended periods, tau inclusions continue to turnover, but their half-lives increase to ~ 2 weeks and ~ 3 weeks after 1 and 2 months in culture, respectively. Individual tau inclusions can be long-lived structures that can persist for months in these BSC models and for even longer in the human brain. However, our data indicate that tau inclusions, are not ‘tombstones’, but dynamic structures with appreciable turnover. Understanding the cellular processes mediating this inclusion turnover may lead to new therapeutic strategies that could reverse pathological tau inclusion formation.


2020 ◽  
Vol 14 ◽  
Author(s):  
Alex R. D. Delbridge ◽  
Dann Huh ◽  
Margot Brickelmaier ◽  
Jeremy C. Burns ◽  
Chris Roberts ◽  
...  

Microglia are central nervous system (CNS) resident immune cells that have been implicated in neuroinflammatory pathogenesis of a variety of neurological conditions. Their manifold context-dependent contributions to neuroinflammation are only beginning to be elucidated, which can be attributed in part to the challenges of studying microglia in vivo and the lack of tractable in vitro systems to study microglia function. Organotypic brain slice cultures offer a tissue-relevant context that enables the study of CNS resident cells and the analysis of brain slice microglial phenotypes has provided important insights, in particular into neuroprotective functions. Here we use RNA sequencing, direct digital quantification of gene expression with nCounter® technology and targeted analysis of individual microglial signature genes, to characterize brain slice microglia relative to acutely-isolated counterparts and 2-dimensional (2D) primary microglia cultures, a widely used in vitro surrogate. Analysis using single cell and population-based methods found brain slice microglia exhibited better preservation of canonical microglia markers and overall gene expression with stronger fidelity to acutely-isolated adult microglia, relative to in vitro cells. We characterized the dynamic phenotypic changes of brain slice microglia over time, after plating in culture. Mechanical damage associated with slice preparation prompted an initial period of inflammation, which resolved over time. Based on flow cytometry and gene expression profiling we identified the 2-week timepoint as optimal for investigation of microglia responses to exogenously-applied stimuli as exemplified by treatment-induced neuroinflammatory changes observed in microglia following LPS, TNF and GM-CSF addition to the culture medium. Altogether these findings indicate that brain slice cultures provide an experimental system superior to in vitro culture of microglia as a surrogate to investigate microglia functions, and the impact of soluble factors and cellular context on their physiology.


Sign in / Sign up

Export Citation Format

Share Document