scholarly journals A novel anti-proliferative role of HMGA2 in induction of apoptosis through caspase 2 in primary human fibroblast cells

2015 ◽  
Vol 35 (1) ◽  
Author(s):  
Xi Shi ◽  
Baoqing Tian ◽  
Wenlong Ma ◽  
Na Zhang ◽  
Yuehua Qiao ◽  
...  

The HMGA2 (high-mobility group AT-hook) protein has previously been shown as an oncoprotein, whereas ectopic expression of HMGA2 is found to induce growth arrest in primary cells. The precise mechanisms underlying this phenomenon remain to be unravelled. In the present study, we determined that HMGA2 was able to induce apoptosis in WI38 primary human cells. We show that WI38 cells expressing high level of HMGA2 were arrested at G2/M phase and exhibited apoptotic nuclear phenotypes. Meanwhile, the cleaved caspase 3 (cysteine aspartic acid-specific protease 3) was detected 8 days after HMGA2 overexpression. Flow cytometric analysis confirmed that the ratio of cells undergoing apoptosis increased dramatically. Concurrently, other major apoptotic markers were also detected, including the up-regulation of p53, Bax and cleaved caspase 9, down-regulation of Bcl-2; as well as release of cytochrome c from the mitochondria. We further demonstrate that the shRNA (small-hairpin RNA)-mediated Apaf1 (apoptotic protease activating factor 1) silencing partially rescued the HMGA2-induced apoptosis, which was accompanied by the decrease of cleaved caspase-3 level and a decline of cell death ratio. Our results also reveal that γH2A was accumulated in nuclei during the HMGA2-induced apoptosis along with the up-regulation of cleaved caspase 2, suggesting that the HMGA2-induced apoptosis was dependent on the pathway of DNA damage. Overall, the present study unravelled a novel function of HMGA2 in induction of apoptosis in human primary cell lines, and provided clues for clarification of the mechanistic action of HMGA2 in addition to its function as an oncoprotein.

2000 ◽  
Vol 192 (7) ◽  
pp. 1035-1046 ◽  
Author(s):  
Veronika Jesenberger ◽  
Katarzyna J. Procyk ◽  
Junying Yuan ◽  
Siegfried Reipert ◽  
Manuela Baccarini

The enterobacterial pathogen Salmonella induces phagocyte apoptosis in vitro and in vivo. These bacteria use a specialized type III secretion system to export a virulence factor, SipB, which directly activates the host's apoptotic machinery by targeting caspase-1. Caspase-1 is not involved in most apoptotic processes but plays a major role in cytokine maturation. We show that caspase-1–deficient macrophages undergo apoptosis within 4–6 h of infection with invasive bacteria. This process requires SipB, implying that this protein can initiate the apoptotic machinery by regulating components distinct from caspase-1. Invasive Salmonella typhimurium targets caspase-2 simultaneously with, but independently of, caspase-1. Besides caspase-2, the caspase-1–independent pathway involves the activation of caspase-3, -6, and -8 and the release of cytochrome c from mitochondria, none of which occurs during caspase-1–dependent apoptosis. By using caspase-2 knockout macrophages and chemical inhibition, we establish a role for caspase-2 in both caspase-1–dependent and –independent apoptosis. Particularly, activation of caspase-1 during fast Salmonella-induced apoptosis partially relies on caspase-2. The ability of Salmonella to induce caspase-1–independent macrophage apoptosis may play a role in situations in which activation of this protease is either prevented or uncoupled from the induction of apoptosis.


2004 ◽  
Vol 32 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Hyung-Jin Kim ◽  
Seon Il Jang ◽  
Young-Jun Kim ◽  
Hyun-Ock Pae ◽  
Hae-Young Won ◽  
...  

We studied the effect of 4-acetyl-12,13-epoxyl-9-trichothecene-3,15-diol (AETD) isolated from Isaria japonica, one of the most popular Chinese fungal medicines, on the induction of apoptosis in rat bladder carcinoma NBT-II cells. AETD was cytotoxic to NBT-II cells, and this cytotoxic effect appears to be attributed to its induction of apoptotic cell death, as AETD induced nuclear morphological changes and internucleosomal DNA fragmentation, and increased the proportion of hypodiploid cells and activity of caspase-3. AETD treatment also decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the pro-apoptotic protein Bax. These results provide important information in understanding the mechanism(s) of AETD-induced apoptosis.


2001 ◽  
Vol 75 (24) ◽  
pp. 12169-12181 ◽  
Author(s):  
Sarah A. Kopecky ◽  
Mark C. Willingham ◽  
Douglas S. Lyles

ABSTRACT The induction of apoptosis in host cells is a prominent cytopathic effect of vesicular stomatitis virus (VSV) infection. The viral matrix (M) protein is responsible for several important cytopathic effects, including the inhibition of host gene expression and the induction of cell rounding in VSV-infected cells. This raises the question of whether M protein is also involved in the induction of apoptosis. HeLa or BHK cells were transfected with M mRNA to determine whether M protein induces apoptosis when expressed in the absence of other viral components. Expression of M protein induced apoptotic morphological changes and activated caspase-3 in both cell types, indicating that M protein induces apoptosis in the absence of other viral components. An M protein containing a point mutation that renders it defective in the inhibition of host gene expression (M51R mutation) activated little, if any, caspase-3, while a deletion mutant lacking amino acids 4 to 21 that is defective in the virus assembly function but fully functional in the inhibition of host gene expression was as effective as wild-type (wt) M protein in activating caspase-3. To determine whether M protein influences the induction of apoptosis in the context of a virus infection, the M51R M protein mutation was incorporated onto a wt background by using a recombinant infectious cDNA clone (rM51R-M virus). The timing of the induction of apoptosis by rM51R-M virus was compared to that by the corresponding recombinant wt (rwt) virus and to that by tsO82 virus, the mutant virus in which the M51R mutation was originally identified. In HeLa cells, rwt virus induced apoptosis faster than did rM51R-M virus, demonstrating a role for M protein in the induction of apoptosis. In contrast to the results obtained with HeLa cells, rwt virus induced apoptosis more slowly than did rM51R-M virus in BHK cells. This indicates that a viral component other than M protein contributes to induction of apoptosis in BHK cells and that wt M protein acts to delay induction of apoptosis by the other viral component. tsO82 virus induced apoptosis more rapidly than did rM51R-M virus in both HeLa and BHK cells. These two viruses contain the same point mutation in their M proteins, suggesting that sequence differences in genes other than that for M protein affect their rates of induction of apoptosis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1361-1361 ◽  
Author(s):  
Daniel A Luedtke ◽  
Yongwei Su ◽  
Holly Edwards ◽  
Lisa Polin ◽  
Juiwanna Kushner ◽  
...  

Abstract Introduction: Patients with acute myeloid leukemia (AML) face overall 5-year survival rates of 65% and 27% for children and adults, respectively, leaving significant room for improvement. Relapse remains a major contributor to such low overall survival rates, and leukemic stem cells (LSCs) that survive treatment are believed to be responsible for AML relapse. The anti-apoptotic protein Bcl-2 is overexpressed in bulk AML cells and LSCs and is associated with poor clinical outcomes. Thus, Bcl-2 represents a promising therapeutic target for the treatment of AML. Venetoclax (ABT-199) is a selective Bcl-2 inhibitor that has shown great potential for treating a number of malignancies, including AML. Venetoclax inhibits Bcl-2, preventing it from sequestering pro-apoptotic Bcl-2 family protein Bim, leading to Bim activated Bax/Bak, resulting in apoptosis. However, Mcl-1 can also sequester Bim and prevent apoptosis. We previously showed that directly targeting Mcl-1 can enhance the antileukemic activity of venetoclax (Luedtke DA, et al. Signal Transduct Target Ther. Apr 2017). Alternatively, we proposed that indirect targeting of Mcl-1 may preserve or enhance the antileukemic activity of venetoclax, and prevent resistance resulting from Mcl-1. It has been reported that inhibition of CDK9 can downregulate cell survival genes regulated by superenhancers, including Mcl-1, MYC, and Cyclin D1. One CDK9 inhibitor in clinical development, flavopiridol (alvocidib), has progressed to phase II clinical trials in AML. However, off target effects and dose-limiting toxicities remain a concern. Voruciclib is an oral, selective CDK inhibitor differentiated by its potent inhibition of CDK9 as compared to other CDK inhibitors. This selectivity may potentially circumvent toxicities resulting from inhibition of non-CDK targets like MAK and ICK that are inhibited by flavopiridol. Voruciclib has been shown in vitro to promote apoptosis and decrease Mcl-1 expression levels in chronic lymphocytic leukemia (CLL) cells (Paiva C, et al. PLOS One. Nov 2015) and inhibit tumor growth in mouse xenograft models of diffuse large B-cell lymphoma (DLBCL) in combination with venetoclax (Dey J. et al Scientific Reports. Dec 2017). Based on these data, voruciclib may downregulate Mcl-1 in AML cells and therefore synergistically enhance the antileukemic activity of venetoclax. Methods/Results: Culturing AML cell lines (THP-1, U937, MOLM-13, MV4-11, and OCI-AML3) and primary patient samples with various concentrations of voruciclib resulted in a concentration-dependent increase in Annexin V+ cells (2 μM voruciclib induced 13.8-55.8% Annexin V+ cells) along with increased levels of cleaved caspase 3 and PARP, demonstrating that voruciclib induces apoptosis in AML cells. Next, we tested the combination of voruciclib and venetoclax in AML cell lines and primary AML patient samples at clinically achievable concentrations. Annexin V/PI staining, flow cytometry analysis, and combination index calculation (using CalcuSyn software) revealed synergistic induction of apoptosis by voruciclib and venetoclax combination (combination index values for MV4-11, U937, THP-1, and MOLM-13 cells were <0.73; treatment with 2 µM voruciclib and venetoclax for 24 h resulted in >80% apoptosis). Importantly, synergy was observed in both venetoclax sensitive and resistant cell lines. This was accompanied by increased cleavage of caspase 3 and PARP. Lentiviral shRNA knockdown of Bak and Bax partially rescued AML cells from voruciclib-induced apoptosis, showing that voruciclib induces apoptosis at least partially through the intrinsic apoptosis pathway. However, Bak and Bax knockdown had little to no effect on induction of apoptosis by the combination treatment, indicating that there might be other molecular mechanisms underlying the synergistic interaction between the two agents. Treatment with the pan-caspase inhibitor Z-VAD-FMK partially rescued cells from combination treatment induced-apoptosis. Discussion: Collectively, these results demonstrate that voruciclib and venetoclax synergistically induce apoptosis in AML cells in vitro and reverse venetoclax resistance. Further studies to determine the mechanism of action and in vivo efficacy of this promising combination in AML xenografts and PDX models are underway. Disclosures Ge: MEI Pharma: Research Funding.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3090-3097 ◽  
Author(s):  
Zeev Estrov ◽  
Peter F. Thall ◽  
Moshe Talpaz ◽  
Elihu H. Estey ◽  
Hagop M. Kantarjian ◽  
...  

Abstract Because caspase activation is an essential step in programmed cell death (apoptosis) and cytotoxic drug-induced apoptosis is mediated by caspase 2 and caspase 3, we hypothesized that caspase 2 and 3 levels predict clinical outcome in acute myelogenous leukemia (AML). Using quantitative Western blot analysis, we studied the levels of nonactivated (uncleaved) caspase 2 and 3 in peripheral blood low-density cells from 185 patients with newly diagnosed AML. We also measured the level of activated (cleaved) caspase 3 in 41 randomly selected samples from the 185 patients. Finally, we analyzed the effect of caspase 2 and 3 levels and other prognostic variables on patient survival using a multivariate Cox model. We found that median levels of nonactivated caspase 2 and 3 were higher in AML than in normal peripheral blood cells (P &lt; .001 and P &lt;.02, respectively). There was no association between caspase level and either the percentage of peripheral blasts or any specific type of leukemia cell cytogenetic abnormalities. When the effect of each uncleaved caspase was considered individually, a high level of uncleaved caspase 3 (P = .04), but not of caspase 2 (P = .16), was associated with decreased survival. Conversely, a high level of cleaved caspase 3 denoted improved survival and correlated with the inactivation of the DNA-repair enzyme poly(ADP-ribose) polymerase. Thus, cleaved caspase 3 could stimulate the apoptotic cascade further, and lack of its activation likely caused an accumulation of the uncleaved caspase. Although uncleaved caspase 2 level per se had no prognostic significance, the interactive effect of high levels of both uncleaved caspase 2 and 3 denoted very poor survival (P &lt; .001) and had the largest effect of all prognostic variables (P &lt; .001; estimated relative risk, 2.49; 95% confidence interval, 1.59 to 3.90). Taken together, caspase 2 and caspase 3 protein levels obtained at diagnosis may constitute a reliable prognostic factor in AML. © 1998 by The American Society of Hematology.


2019 ◽  
Vol 35 (3) ◽  
pp. 256-263 ◽  
Author(s):  
Jian Ying Yang ◽  
Yong Fa Zhang ◽  
Xiang Ping Meng ◽  
Xiang Feng Kong

T-2 toxin is a type-A trichothecene produced by Fusarium found in several food commodities worldwide. T-2 toxin causes reproductive disorders, genotoxicity, and testicular toxicity in animals. Our previous research has reported that T-2 toxin can induce apoptosis via the Bax-dependent caspase-3 activation in mouse primary Leydig cells. However, little is known about the functions of autophagy and the cross talk between autophagy and apoptosis after exposure to T-2 toxin in Leydig cells. This study investigated these problems in mouse primary Leydig cells. Results showed that T-2 toxin treatment upregulated LC3-II and Beclin-1 expression, suggesting that T-2 toxin induced a high level of autophagy. Pretreatment with chloroquine (an autophagy inhibitor) and rapamycin (an autophagy inducer) increased and decreased the rate of apoptosis, respectively, in contrast to T-2 toxin-treated group. Autophagy delayed apoptosis in the T-2 toxin-treated Leydig cells. Therefore, autophagy may prevent cells from undergoing apoptosis by reducing T-2 toxin-induced cytotoxicity.


Author(s):  
Amer Mohamed ◽  
Osama Rakha

ABSTRACTObjective: The rove beetle Paederus alfieri Koch. (Coleoptera: Staphylinidae) is well-known among natural enemies in Egypt as an important predatorof agricultural insect pests, it used as an essential agent in the integrated pest management programs. Recent studies have revealed that Paederus mayhave anti-proliferative effect; however, its mechanisms remain unclear. The aim of the present study is to investigate the anticancer effect of P. alfieriextract (PAE) on K562 human myeloid leukemia cancer cells and elucidation of its mechanism.Methods: Human myeloid leukemia K562 cells were treated with PAE at different concentrations. Cell proliferation was measured using the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis was evaluated using flow cytometry analysis. The expressions ofBcl-2, Bax, active caspase-3, t-Akt, and p-Akt were evaluated by western blotting.Results: PAE has a dose-dependent antiproliferative effect against K562 cells. The half maximal inhibitory concentration was estimated as212±2.3 ng/ml. Flow cytometric analysis showed that PAE induces apoptosis in a dose-dependent manner in K562 cells. We also investigated themolecular mechanism of PAE-induced apoptosis. PAE downregulated Bcl-2 and upregulated Bax and cleaved caspase-3 proteins. Furthermore, thelevels of p-Akt are dose-dependently decreased in response to PAE, whereas the total Akt protein levels remained constant during PAE treatment.Conclusion: Taken together PAE-induced apoptosis in human myeloid leukemia K562 cells by modulating PI3K/Akt pathway. Our findings suggestthat may be PAE is a good extract for developing anticancer drugs for human myeloid leukemia cancer treatment.Keywords: Paederus alfieri, Pederin, K562, Apoptosis, PI3K/Akt pathway.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3090-3097 ◽  
Author(s):  
Zeev Estrov ◽  
Peter F. Thall ◽  
Moshe Talpaz ◽  
Elihu H. Estey ◽  
Hagop M. Kantarjian ◽  
...  

Because caspase activation is an essential step in programmed cell death (apoptosis) and cytotoxic drug-induced apoptosis is mediated by caspase 2 and caspase 3, we hypothesized that caspase 2 and 3 levels predict clinical outcome in acute myelogenous leukemia (AML). Using quantitative Western blot analysis, we studied the levels of nonactivated (uncleaved) caspase 2 and 3 in peripheral blood low-density cells from 185 patients with newly diagnosed AML. We also measured the level of activated (cleaved) caspase 3 in 41 randomly selected samples from the 185 patients. Finally, we analyzed the effect of caspase 2 and 3 levels and other prognostic variables on patient survival using a multivariate Cox model. We found that median levels of nonactivated caspase 2 and 3 were higher in AML than in normal peripheral blood cells (P < .001 and P <.02, respectively). There was no association between caspase level and either the percentage of peripheral blasts or any specific type of leukemia cell cytogenetic abnormalities. When the effect of each uncleaved caspase was considered individually, a high level of uncleaved caspase 3 (P = .04), but not of caspase 2 (P = .16), was associated with decreased survival. Conversely, a high level of cleaved caspase 3 denoted improved survival and correlated with the inactivation of the DNA-repair enzyme poly(ADP-ribose) polymerase. Thus, cleaved caspase 3 could stimulate the apoptotic cascade further, and lack of its activation likely caused an accumulation of the uncleaved caspase. Although uncleaved caspase 2 level per se had no prognostic significance, the interactive effect of high levels of both uncleaved caspase 2 and 3 denoted very poor survival (P < .001) and had the largest effect of all prognostic variables (P < .001; estimated relative risk, 2.49; 95% confidence interval, 1.59 to 3.90). Taken together, caspase 2 and caspase 3 protein levels obtained at diagnosis may constitute a reliable prognostic factor in AML. © 1998 by The American Society of Hematology.


2000 ◽  
Vol 74 (15) ◽  
pp. 7072-7078 ◽  
Author(s):  
A. A. A. M. Danen-van Oorschot ◽  
A. J. van der Eb ◽  
M. H. M. Noteborn

ABSTRACT The chicken anemia virus protein Apoptin has been shown to induce apoptosis in a large number of transformed and tumor cell lines, but not in primary cells. Whereas many other apoptotic stimuli (e.g., many chemotherapeutic agents and radiation) require functional p53 and are inhibited by Bcl-2, Apoptin acts independently of p53, and its activity is enhanced by Bcl-2. Here we study the involvement of caspases, an important component of the apoptotic machinery present in mammalian cells. Using a specific antibody, active caspase-3 was detected in cells expressing Apoptin and undergoing apoptosis. Although Apoptin activity was not affected by CrmA, p35 did inhibit Apoptin-induced apoptosis, as determined by nuclear morphology. Cells expressing both Apoptin and p35 showed only a slight change in nuclear morphology. However, in most of these cells, cytochrome c is still released and the mitochondria are not stained by CMX-Ros, indicating a drop in mitochondrial membrane potential. These results imply that although the final apoptotic events are blocked by p35, parts of the upstream apoptotic pathway that affect mitochondria are already activated by Apoptin. Taken together, these data show that the viral protein Apoptin employs cellular apoptotic factors for induction of apoptosis. Although activation of upstream caspases is not required, activation of caspase-3 and possibly also other downstream caspases is essential for rapid Apoptin-induced apoptosis.


Blood ◽  
1995 ◽  
Vol 85 (10) ◽  
pp. 2691-2698 ◽  
Author(s):  
C Guillouf ◽  
X Grana ◽  
M Selvakumaran ◽  
A De Luca ◽  
A Giordano ◽  
...  

Employing the myeloblastic leukemia M1 cell line, which does not express endogenous p53, and genetically engineered variants, it was recently shown that activation of p53, using a p53 temperature-sensitive mutant transgene (p53ts), resulted in rapid apoptosis that was delayed by high level ectopic expression of bcl-2. In this report, advantage has been taken of these M1 variants to investigate the relationship between p53-mediated G1 arrest and apoptosis. Flow cytometric cell cycle analysis has provided evidence that activation of wild-type (wt) p53 function in M1 cells resulted in the induction of G1 growth arrest; this was clearly seen in the M1p53/bcl-2 cells because of the delay in apoptosis that unmasked p53-induced G1 growth arrest. This finding was further corroborated at the molecular level by analysis of the expression and function of key cell cycle regulatory genes in M1p53 versus M1p53/bcl-2 cells after the activation of wt p53 function; events that take place at early times during the p53-induced G1 arrest occur in both the M1p53 and the M1p53/bcl-2 cells, whereas later events occur only in the M1p53/bcl-2 cells, which undergo delayed apoptosis, thereby allowing the cells to complete G1 arrest. Finally, it was observed that a spectrum of p53 target genes implicated in p53-induced growth suppression and apoptosis were similarly regulated, either induced (gadd45, waf1, mdm2, and bax) or suppressed (c-myc and bcl-2), after activation of wt p53 function in M1p53 and M1p53/bcl-2 cells. Taken together, these findings show that wt p53 can simultaneously induce the genetic programs of both G1 growth arrest and apoptosis within the same cell type, in which the genetic program of cell death can proceed in either G1-arrested (M1p53/bcl-2) or cycling (M1p53) cells. These findings increase our understanding of the functions of p53 as a tumor suppressor and how alterations in these functions could contribute to malignancy.


Sign in / Sign up

Export Citation Format

Share Document