Arabidopsis DNA double-strand break repair pathways

2004 ◽  
Vol 32 (6) ◽  
pp. 964-966 ◽  
Author(s):  
C.E. West ◽  
W.M. Waterworth ◽  
P.A. Sunderland ◽  
C.M. Bray

DSBs (double-strand breaks) are one of the most serious forms of DNA damage that can occur in a cell's genome. DNA replication in cells containing DSBs, or following incorrect repair, may result in the loss of large amounts of genetic material, aneuploid daughter cells and cell death. There are two major pathways for DSB repair: HR (homologous recombination) uses an intact copy of the damaged region as a template for repair, whereas NHEJ (non-homologous end-joining) rejoins DNA ends independently of DNA sequence. In most plants, NHEJ is the predominant DSB repair pathway. Previously, the Arabidopsis NHEJ mutant atku80 was isolated and found to display hypersensitivity to bleomycin, a drug that causes DSBs in DNA. In the present study, the transcript profiles of wild-type and atku80 mutant plants grown in the presence and absence of bleomycin are determined by microarray analysis. Several genes displayed very strong transcriptional induction specifically in response to DNA damage, including the characterized DSB repair genes AtRAD51 and AtBRCA1. These results identify novel candidate genes that encode components of the DSB repair pathways active in NHEJ mutant plants.

Author(s):  
Natalja Beying ◽  
◽  
Carla Schmidt ◽  
Holger Puchta ◽  
◽  
...  

In genome engineering, after targeted induction of double strand breaks (DSBs) researchers take advantage of the organisms’ own repair mechanisms to induce different kinds of sequence changes into the genome. Therefore, understanding of the underlying mechanisms is essential. This chapter will review in detail the two main pathways of DSB repair in plant cells, non-homologous end joining (NHEJ) and homologous recombination (HR) and sum up what we have learned over the last decades about them. We summarize the different models that have been proposed and set these into relation with the molecular outcomes of different classes of DSB repair. Moreover, we describe the factors that have been identified to be involved in these pathways. Applying this knowledge of DSB repair should help us to improve the efficiency of different types of genome engineering in plants.


Author(s):  
Ruben Schep ◽  
Eva K. Brinkman ◽  
Christ Leemans ◽  
Xabier Vergara ◽  
Ben Morris ◽  
...  

AbstractDNA double-strand break (DSB) repair is mediated by multiple pathways, including classical non-homologous end-joining pathway (NHEJ) and several homology-driven repair pathways. This is particularly important for Cas9-mediated genome editing, where the outcome critically depends on the pathway that repairs the break. It is thought that the local chromatin context affects the pathway choice, but the underlying principles are poorly understood. Using a newly developed multiplexed reporter assay in combination with Cas9 cutting, we systematically measured the relative activities of three DSB repair pathways as function of chromatin context in >1,000 genomic locations. This revealed that NHEJ is broadly biased towards euchromatin, while microhomology-mediated end-joining (MMEJ) is more efficient in specific heterochromatin contexts. In H3K27me3-marked heterochromatin, inhibition of the H3K27 methyltransferase EZH2 shifts the balance towards NHEJ. Single-strand templated repair (SSTR), often used for precise CRISPR editing, competes with MMEJ, and this competition is weakly associated with chromatin context. These results provide insight into the impact of chromatin on DSB repair pathway balance, and guidance for the design of Cas9-mediated genome editing experiments.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi196-vi196
Author(s):  
Sharmistha Pal ◽  
Jie Bian ◽  
Brendan Price ◽  
Dipanjan Chowdhury ◽  
Daphne Haas-Kogan

Abstract New approaches to the treatment of diffuse intrinsic pontine gliomas (DIPGs) are desperately needed. DNA damage response is essential for cells to maintain genome integrity as DNA is damaged by both endogenous and exogenous stressors. Many cancer cells exhibit hyper-dependency on specific DNA repair pathways due to either defects in DNA repair mechanisms and/or high levels of endogenous stress leading to accumulation of DNA damage lesions. Identification of DIPG-specific DNA repair deficiencies and resultant dependencies may establish novel therapeutic strategies for DIPGs. METHODS To identify pathways critical for DIPG cell survival, genome wide CRISPR-Cas9 screen was performed on patient derived DIPG cell lines followed by gene set enrichment analyses. To monitor the effects of pathway inhibition on survival, apoptosis, DNA damage and repair, assays were performed to measure cell proliferation, cleaved-caspase3, gamma-H2AX and reporter based-DNA repair efficiency. RESULTS Our unbiased CRISPR approach to uncover vulnerabilities in DIPGs identified DNA double strand break (DSBs) repair pathways as essential for DIPG cell proliferation and survival. Further studies revealed high basal DSBs in DIPG cells compared to neural stem cells and primary astrocytes that suggest dependence of DIPG cell survival on specific DSB repair pathways. We confirmed the intrinsic reliance of DIPG cells on the specific DSB repair pathway of mutagenic end-joining, and defined a key role for DNA repair in suppressing endogenous DNA damage-induced apoptotic cell death. CONCLUSION DIPG cells have high endogenous DNA damage levels and escape catastrophic genomic instability and cell death by engaging DNA repair pathways, in particular the mutagenic end-joining DNA repair pathway. Inhibition of this specific DNA repair pathway represents a promising new avenue for the treatment of DIPGs.


2019 ◽  
Vol 20 (9) ◽  
pp. 891-902 ◽  
Author(s):  
Yucui Zhao ◽  
Siyu Chen

During the last decade, advances of radiotherapy (RT) have been made in the clinical practice of cancer treatment. RT exerts its anticancer effect mainly via leading to the DNA Double-Strand Break (DSB), which is one of the most toxic DNA damages. Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) are two major DSB repair pathways in human cells. It is known that dysregulations of DSB repair elicit a predisposition to cancer and probably result in resistance to cancer therapies including RT. Therefore, targeting the DSB repair presents an attractive strategy to counteract radio-resistance. In this review, we describe the latest knowledge of the two DSB repair pathways, focusing on several key proteins contributing to the repair, such as DNA-PKcs, RAD51, MRN and PARP1. Most importantly, we discuss the possibility of overcoming radiation resistance by targeting these proteins for therapeutic inhibition. Recent tests of DSB repair inhibitors in the laboratory and their translations into clinical studies are also addressed.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1506
Author(s):  
Angelos Papaspyropoulos ◽  
Nefeli Lagopati ◽  
Ioanna Mourkioti ◽  
Andriani Angelopoulou ◽  
Spyridon Kyriazis ◽  
...  

Protection of genome integrity is vital for all living organisms, particularly when DNA double-strand breaks (DSBs) occur. Eukaryotes have developed two main pathways, namely Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR), to repair DSBs. While most of the current research is focused on the role of key protein players in the functional regulation of DSB repair pathways, accumulating evidence has uncovered a novel class of regulating factors termed non-coding RNAs. Non-coding RNAs have been found to hold a pivotal role in the activation of DSB repair mechanisms, thereby safeguarding genomic stability. In particular, long non-coding RNAs (lncRNAs) have begun to emerge as new players with vast therapeutic potential. This review summarizes important advances in the field of lncRNAs, including characterization of recently identified lncRNAs, and their implication in DSB repair pathways in the context of tumorigenesis.


2021 ◽  
Author(s):  
Takaaki Yasuhara ◽  
Reona Kato ◽  
Motohiro Yamauchi ◽  
Yuki Uchihara ◽  
Lee Zou ◽  
...  

AbstractR-loops, consisting of ssDNA and DNA-RNA hybrids, are potentially vulnerable unless they are appropriately processed. Recent evidence suggests that R-loops can form in the proximity of DNA double-strand breaks (DSBs) within transcriptionally active regions. Yet, how the vulnerability of R-loops is overcome during DSB repair remains unclear. Here, we identify RAP80 as a factor suppressing the vulnerability of ssDNA in R-loops and chromosome translocations and deletions during DSB repair. Mechanistically, RAP80 prevents unscheduled nucleolytic processing of ssDNA in R-loops by CtIP. This mechanism promotes efficient DSB repair via transcription-associated end-joining dependent on BRCA1, Polθ, and LIG1/3. Thus, RAP80 suppresses the vulnerability of R-loops during DSB repair, thereby precluding genomic abnormalities in a critical component of the genome caused by deleterious R-loop processing.


Author(s):  
Roopa Thapar

DNA double-strand breaks (DSBs) are deleterious lesions that are generated in response to ionizing radiation or replication fork collapse that can lead to genomic instability and cancer.  Eukaryotes have evolved two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ) to repair DSBs.  Whereas the roles of protein-DNA interactions in HR and NHEJ have been fairly well defined, the functions of small and long non-coding RNAs and RNA-DNA hybrids in the DNA damage response is just beginning to be elucidated.  This review summarizes recent discoveries on the identification of non-coding RNAs and RNA-mediated regulation of DSB repair


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lior Onn ◽  
Miguel Portillo ◽  
Stefan Ilic ◽  
Gal Cleitman ◽  
Daniel Stein ◽  
...  

DNA double-strand breaks (DSB) are the most deleterious type of DNA damage. In this work, we show that SIRT6 directly recognizes DNA damage through a tunnel-like structure that has high affinity for DSB. SIRT6 relocates to sites of damage independently of signaling and known sensors. It activates downstream signaling for DSB repair by triggering ATM recruitment, H2AX phosphorylation and the recruitment of proteins of the homologous recombination and non-homologous end joining pathways. Our findings indicate that SIRT6 plays a previously uncharacterized role as a DNA damage sensor, a critical factor in initiating the DNA damage response (DDR). Moreover, other Sirtuins share some DSB-binding capacity and DDR activation. SIRT6 activates the DDR before the repair pathway is chosen, and prevents genomic instability. Our findings place SIRT6 as a sensor of DSB, and pave the road to dissecting the contributions of distinct DSB sensors in downstream signaling.


2009 ◽  
Vol 187 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Troy E. Messick ◽  
Roger A. Greenberg

The intimate relationship between DNA double-strand break (DSB) repair and cancer susceptibility has sparked profound interest in how transactions on DNA and chromatin surrounding DNA damage influence genome integrity. Recent evidence implicates a substantial commitment of the cellular DNA damage response machinery to the synthesis, recognition, and hydrolysis of ubiquitin chains at DNA damage sites. In this review, we propose that, in order to accommodate parallel processes involved in DSB repair and checkpoint signaling, DSB-associated ubiquitin structures must be nonuniform, using different linkages for distinct functional outputs. We highlight recent advances in the study of nondegradative ubiquitin signaling at DSBs, and discuss how recognition of different ubiquitin structures may influence DNA damage responses.


2012 ◽  
Vol 40 (1) ◽  
pp. 173-178 ◽  
Author(s):  
Johanne M. Murray ◽  
Tom Stiff ◽  
Penny A. Jeggo

DNA DSBs (double-strand breaks) represent a critical lesion for a cell, with misrepair being potentially as harmful as lack of repair. In mammalian cells, DSBs are predominantly repaired by non-homologous end-joining or homologous recombination. The kinetics of repair of DSBs can differ widely, and recent studies have shown that the higher-order chromatin structure can dramatically affect the pathway utilized, the rate of repair and the genetic factors required for repair. Studies of the repair of DSBs arising within heterochromatic DNA regions have provided insight into the constraints that higher-order chromatin structure poses on repair and the processing that is uniquely required for the repair of such DSBs. In the present paper, we provide an overview of our current understanding of the process of heterochromatic DSB repair in mammalian cells and consider the evolutionary conservation of the processes.


Sign in / Sign up

Export Citation Format

Share Document