Cellular functions of the BRCA tumour-suppressor proteins

2006 ◽  
Vol 34 (5) ◽  
pp. 633-645 ◽  
Author(s):  
S.J. Boulton

Inherited germline mutations in either BRCA1 or BRCA2 confer a significant lifetime risk of developing breast or ovarian cancer. Defining how these two genes function at the cellular level is essential for understanding their role in tumour suppression. Although BRCA1 and BRCA2 were independently cloned over 10 years ago, it is only in the last few years that significant progress has been made towards understanding their function in cells. It is now widely accepted that both genes play critical roles in the maintenance of genome stability. Evidence implicates BRCA2 as an integral component of the homologous recombination machinery, whereas BRCA1 is an E3 ubiquitin ligase that has an impact on DNA repair, transcriptional regulation, cell-cycle progression and meiotic sex chromosome inactivation. In this article, I will review the most recent advances and provide a perspective of potential future directions in this field.

Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1687-1696 ◽  
Author(s):  
K. Halfar ◽  
C. Rommel ◽  
H. Stocker ◽  
E. Hafen

Ras mediates a plethora of cellular functions during development. In the developing eye of Drosophila, Ras performs three temporally separate functions. In dividing cells, it is required for growth but is not essential for cell cycle progression. In postmitotic cells, it promotes survival and subsequent differentiation of ommatidial cells. In the present paper, we have analyzed the different roles of Ras during eye development by using molecularly defined complete and partial loss-of-function mutations of Ras. We show that the three different functions of Ras are mediated by distinct thresholds of MAPK activity. Low MAPK activity prolongs cell survival and permits differentiation of R8 photoreceptor cells while high or persistent MAPK activity is sufficient to precociously induce R1-R7 photoreceptor differentiation in dividing cells.


2002 ◽  
Vol 13 (9) ◽  
pp. 3178-3191 ◽  
Author(s):  
Smita Abbi ◽  
Hiroki Ueda ◽  
Chuanhai Zheng ◽  
Lee Ann Cooper ◽  
Jihe Zhao ◽  
...  

Focal adhesion kinase (FAK) is a major mediator of integrin signaling pathways. The mechanisms of regulation of FAK activity and its associated cellular functions are not very well understood. Here, we present data suggesting that a novel protein FIP200 functions as an inhibitor for FAK. We show the association of endogenous FIP200 with FAK, which is decreased upon integrin-mediated cell adhesion concomitant with FAK activation. In vitro- and in vivo-binding studies indicate that FIP200 interacts with FAK through multiple domains directly. FIP200 bound to the kinase domain of FAK inhibited its kinase activity in vitro and its autophosphorylation in vivo. Overexpression of FIP200 or its segments inhibited cell spreading, cell migration, and cell cycle progression, which correlated with their inhibition of FAK activity in vivo. The inhibition of these cellular functions by FIP200 could be rescued by coexpression of FAK. Last, we show that disruption of the functional interaction between endogenous FIP200 with FAK leads to increased FAK phosphorylation and partial restoration of cell cycle progression in cells plated on poly-l-lysine, providing further support for FIP200 as a negative regulator of FAK. Together, these results identify FIP200 as a novel protein inhibitor for FAK.


2020 ◽  
Vol 71 (20) ◽  
pp. 6418-6428
Author(s):  
Jonas Bertels ◽  
Michiel Huybrechts ◽  
Sophie Hendrix ◽  
Lieven Bervoets ◽  
Ann Cuypers ◽  
...  

Abstract It is well known that cadmium (Cd) pollution inhibits plant growth, but how this metal impacts leaf growth processes at the cellular and molecular level is still largely unknown. In the current study, we show that Cd specifically accumulates in the meristematic tissue of the growing maize leaf, while Cd concentration in the elongation zone rapidly declines as the deposition rates diminish and cell volumes increase due to cell expansion. A kinematic analysis shows that, at the cellular level, a lower number of meristematic cells together with a significantly longer cell cycle duration explain the inhibition of leaf growth by Cd. Flow cytometry analysis suggests an inhibition of the G1/S transition, resulting in a lower proportion of cells in the S phase and reduced endoreduplication in expanding cells under Cd stress. Lower cell cycle activity is also reflected by lower expression levels of key cell cycle genes (putative wee1, cyclin-B2-4, and minichromosome maintenance4). Cell elongation rates are also inhibited by Cd, which is possibly linked to the inhibited endoreduplication. Taken together, our results complement studies on Cd-induced growth inhibition in roots and link inhibited cell cycle progression to Cd deposition in the leaf meristem.


2019 ◽  
Vol 116 (39) ◽  
pp. 19464-19473 ◽  
Author(s):  
Stella Pappa ◽  
Natalia Padilla ◽  
Simona Iacobucci ◽  
Marta Vicioso ◽  
Elena Álvarez de la Campa ◽  
...  

Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters. Accordingly, PHF2 depletion induces R-loop accumulation that leads to extensive DNA damage and cell cycle arrest. These data reveal a role of PHF2 as a guarantor of genome stability that allows proper expansion of neural progenitors during development.


2018 ◽  
Author(s):  
Akiyo Hayashi ◽  
Nickolaos Nikiforos Giakoumakis ◽  
Tatjana Heidebrecht ◽  
Takashi Ishii ◽  
Andreas Panagopoulos ◽  
...  

AbstractThe CRL4Cdt2 ubiquitin ligase complex is an essential regulator of cell-cycle progression and genome stability, ubiquitinating substrates such as p21, Set8 and Cdt1, via a display of substrate degrons on PCNA. Here, we examine the hierarchy of the ligase and substrate recruitment kinetics onto PCNA at sites of DNA replication. We demonstrate that the C-terminal end of Cdt2 bears a PCNA interaction protein motif (PIP box, Cdt2PIP), which is necessary and sufficient for binding of Cdt2 to PCNA. Cdt2PIP binds PCNA directly with high affinity, two orders of magnitude tighter than the PIP box of Cdt1. X-ray crystallographic structures of PCNA bound to Cdt2PIP and Cdt1PIP show that the peptides occupy all three binding sites of the trimeric PCNA ring. Mutating Cdt2PIP weakens the interaction with PCNA, rendering CRL4Cdt2 less effective in Cdt1 ubiquitination and leading to defects in Cdt1 degradation. The molecular mechanism we present suggests a new paradigm for bringing substrates to the CRL4-type ligase, where the substrate receptor and substrates bind to a common multivalent docking platform to enable subsequent ubiquitination.Summary blurbThe C-terminal end of Cdt2 contains a PIP-box for binding to PCNA to promote CRL4Cdt2 function, creating a new paradigm, where the substrate receptor and substrates bind to a common multivalent docking platform for ubiquitination.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Longtao Wu ◽  
Clayton D. Crawley ◽  
Andrea Garofalo ◽  
Jackie W. Nichols ◽  
Paige-Ashley Campbell ◽  
...  

Abstract p50, the mature product of NFKB1, is constitutively produced from its precursor, p105. Here, we identify BARD1 as a p50-interacting factor. p50 directly associates with the BARD1 BRCT domains via a C-terminal phospho-serine motif. This interaction is induced by ATR and results in mono-ubiquitination of p50 by the BARD1/BRCA1 complex. During the cell cycle, p50 is mono-ubiquitinated in S phase and loss of this post-translational modification increases S phase progression and chromosomal breakage. Genome-wide studies reveal a substantial decrease in p50 chromatin enrichment in S phase and Cycln E is identified as a factor regulated by p50 during the G1 to S transition. Functionally, interaction with BARD1 promotes p50 protein stability and consistent with this, in human cancer specimens, low nuclear BARD1 protein strongly correlates with low nuclear p50. These data indicate that p50 mono-ubiquitination by BARD1/BRCA1 during the cell cycle regulates S phase progression to maintain genome integrity.


2010 ◽  
Vol 123 (22) ◽  
pp. e1-e1
Author(s):  
J. Merlet ◽  
J. Burger ◽  
N. Tavernier ◽  
B. Richaudeau ◽  
J.-E. Gomes ◽  
...  

2018 ◽  
Vol 293 (43) ◽  
pp. 16697-16708 ◽  
Author(s):  
Weiyi Yao ◽  
Zelin Shan ◽  
Aihong Gu ◽  
Minjie Fu ◽  
Zhifeng Shi ◽  
...  

The Nedd4 family E3 ligases Itch and WWP1/2 play crucial roles in the regulation of cell cycle progression and apoptosis and are closely correlated with cancer development and metastasis. It has been recently shown that the ligase activities of Itch and WWP1/2 are tightly regulated, with the HECT domain sequestered intramolecularly by a linker region connecting WW2 and WW3. Here, we show that a similar autoinhibitory mechanism is utilized by the Drosophila ortholog of Itch and WWP1/2, Suppressor of Deltex (Su(dx)). We show that Su(dx) adopts an inactive steady state with the WW domain region interacting with the HECT domain. We demonstrate that both the linker and preceding WW2 are required for the efficient binding and regulation of Su(dx) HECT. Recruiting the multiple-PY motif–containing adaptor dNdfip via WW domains relieves the inhibitory state of Su(dx) and leads to substrate (e.g. Notch) ubiquitination. Our study demonstrates an evolutionarily conservative mechanism governing the regulation and activation of some Nedd4 family E3 ligases. Our results also suggest a dual regulatory mechanism for specific Notch down-regulation via dNdfip–Su(dx)–mediated Notch ubiquitination.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2094 ◽  
Author(s):  
Roisin M. McAvera ◽  
Lisa J. Crawford

Genomic instability is a hallmark of cancer cells which results in excessive DNA damage. To counteract this, cells have evolved a tightly regulated DNA damage response (DDR) to rapidly sense DNA damage and promote its repair whilst halting cell cycle progression. The DDR functions predominantly within the context of chromatin and requires the action of chromatin-binding proteins to coordinate the appropriate response. TRIM24, TRIM28, TRIM33 and TRIM66 make up the transcriptional intermediary factor 1 (TIF1) family of chromatin-binding proteins, a subfamily of the large tripartite motif (TRIM) family of E3 ligases. All four TIF1 proteins are aberrantly expressed across numerous cancer types, and increasing evidence suggests that TIF1 family members can function to maintain genome stability by mediating chromatin-based responses to DNA damage. This review provides an overview of the TIF1 family in cancer, focusing on their roles in DNA repair, chromatin regulation and cell cycle regulation.


1998 ◽  
Vol 72 (7) ◽  
pp. 5626-5637 ◽  
Author(s):  
Luis M. Schang ◽  
Joanna Phillips ◽  
Priscilla A. Schaffer

ABSTRACT Several observations indicate that late-G1/S-phase-specific cellular functions may be required for herpes simplex virus (HSV) replication: (i) certain mutant HSV strains are replication impaired during infection of cells in the G0/G1 but not in the G1/S phase of the cell cycle, (ii) several late-G1/S-phase-specific cellular proteins and functions are induced during infection, and (iii) the activity of a cellular protein essential for expression of viral immediate-early (IE) genes, HCF, is normally required during the late G1/S phase of the cell cycle. To test the hypothesis that late-G1/S-phase-specific cellular functions are necessary for HSV replication, HEL or Vero cells were infected in the presence of the cell cycle inhibitors roscovitine (Rosco) and olomoucine (Olo). Both drugs inhibit cyclin-dependent kinase 1 (cdk-1) and cdk-2 (required for cell cycle progression into the late G1/S phase) and cdk-5 (inactive in cycling cells) but not cdk-4 or cdk-6 (active at early G1). We found that HSV replication was inhibited by Rosco and Olo but not by lovastatin (a cell cycle inhibitor that does not inhibit cdk activity), staurosporine (a broad-spectrum protein serine-threonine kinase inhibitor), PD98059 (an inhibitor specific for erk-1 and -2) or iso-Olo (a structural isomer of Olo that does not inhibit cdk activity). The concentrations of Rosco and Olo required to inhibit cell cycle progression and viral replication in both HEL and Vero cells were similar. Inhibition of viral replication was found not to be mediated by drug-induced cytotoxicity. Efforts to isolate Rosco- or Olo-resistant HSV mutants were unsuccessful, indicating that these drugs do not act by inhibiting a single viral target. Viral DNA replication and accumulation of IE and early viral RNAs were inhibited in the presence of cell cycle-inhibitory concentrations of Rosco or Olo. We therefore conclude that one or more cdks active from late G1 onward or inactive in nonneuronal cells are required for accumulation of HSV transcripts, viral DNA replication, and production of infectious virus.


Sign in / Sign up

Export Citation Format

Share Document