scholarly journals PHF2 histone demethylase prevents DNA damage and genome instability by controlling cell cycle progression of neural progenitors

2019 ◽  
Vol 116 (39) ◽  
pp. 19464-19473 ◽  
Author(s):  
Stella Pappa ◽  
Natalia Padilla ◽  
Simona Iacobucci ◽  
Marta Vicioso ◽  
Elena Álvarez de la Campa ◽  
...  

Histone H3 lysine 9 methylation (H3K9me) is essential for cellular homeostasis; however, its contribution to development is not well established. Here, we demonstrate that the H3K9me2 demethylase PHF2 is essential for neural progenitor proliferation in vitro and for early neurogenesis in the chicken spinal cord. Using genome-wide analyses and biochemical assays we show that PHF2 controls the expression of critical cell cycle progression genes, particularly those related to DNA replication, by keeping low levels of H3K9me3 at promoters. Accordingly, PHF2 depletion induces R-loop accumulation that leads to extensive DNA damage and cell cycle arrest. These data reveal a role of PHF2 as a guarantor of genome stability that allows proper expansion of neural progenitors during development.

2000 ◽  
Vol 113 (10) ◽  
pp. 1727-1736 ◽  
Author(s):  
J.M. Raleigh ◽  
M.J. O'Connell

The onset of mitosis is controlled by the cyclin dependent kinase Cdc2p. Cdc2p activity is controlled through the balance of phosphorylation and dephosphorylation of tyrosine-15 (Y15) by the Wee1p kinase and Cdc25p phosphatase. In the fission yeast Schizosaccharomyces pombe, detection of DNA damage in G(2) activates a checkpoint that prevents entry into mitosis through the maintenance of Y15 phosphorylation of Cdc2p, thus ensuring DNA repair precedes chromosome segregation. The protein kinase Chk1p is the endpoint of this checkpoint pathway. We have previously reported that overexpression of Chk1p causes a wee1(+)-dependent G(2) arrest, and this or irradiation leads to hyperphosphorylation of Wee1p. Moreover, Chk1p directly phosphorylates Wee1p in vitro. These data suggested that Wee1p is a key target of Chk1p action in checkpoint control. However, cells lacking wee1(+) are checkpoint proficient and sustained Chk1p overexpression arrests cell cycle progression independently of Wee1p. Therefore, up-regulation of Wee1p alone cannot enforce a checkpoint arrest. Chk1p can also phosphorylate Cdc25p in vitro. These phosphorylation events are thought to promote the interaction with 14–3-3 proteins the cytoplasmic retention of the 14–3-3/Cdc25p complexes. However, we show here that the G(2) DNA damage checkpoint is intact in cells that regulate mitotic entry independently of Cdc25p. Further, these cells are still sensitive to Chk1p-mediated arrest, and so down-regulation of Cdc25p is also insufficient to regulate checkpoint arrest. Conversely, inactivation of both wee1(+) and cdc25(+)abolishes checkpoint control. We also show that activation of the G(2) DNA damage checkpoint induces a transient increase in Wee1p levels. We conclude that the G(2) DNA damage checkpoint simultaneously signals via both up-regulation of Wee1p and down-regulation of Cdc25p, thus providing a double-lock mechanism to ensure cell cycle arrest and genomic stability.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


Author(s):  
Michela Galli ◽  
Chiara Frigerio ◽  
Maria Pia Longhese ◽  
Michela Clerici

The natural ends of linear chromosomes resemble those of accidental double-strand breaks (DSBs). DSBs induce a multifaceted cellular response that promotes the repair of lesions and slows down cell cycle progression. This response is not elicited at chromosome ends, which are organized in nucleoprotein structures called telomeres. Besides counteracting DSB response through specialized telomere-binding proteins, telomeres also prevent chromosome shortening. Despite of the different fate of telomeres and DSBs, many proteins involved in the DSB response also localize at telomeres and participate in telomere homeostasis. In particular, the DSB master regulators Tel1/ATM and Mec1/ATR contribute to telomere length maintenance and arrest cell cycle progression when chromosome ends shorten, thus promoting a tumor-suppressive process known as replicative senescence. During senescence, the actions of both these apical kinases and telomere-binding proteins allow checkpoint activation while bulk DNA repair activities at telomeres are still inhibited. Checkpoint-mediated cell cycle arrest also prevents further telomere erosion and deprotection that would favor chromosome rearrangements, which are known to increase cancer-associated genome instability. This review summarizes recent insights into functions and regulation of Tel1/ATM and Mec1/ATR at telomeres both in the presence and in the absence of telomerase, focusing mainly on discoveries in budding yeast.


2015 ◽  
Vol 36 (6) ◽  
pp. 886-899 ◽  
Author(s):  
Riyaz A. Mir ◽  
Aditya Bele ◽  
Sameer Mirza ◽  
Shashank Srivastava ◽  
Appolinaire A. Olou ◽  
...  

Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion ofEcdin cells causes cell cycle arrest, which is rescued by exogenousECD, demonstrating a requirement ofECDfor normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1in vitrofully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescueEcd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function.


2000 ◽  
Vol 20 (4) ◽  
pp. 1134-1139 ◽  
Author(s):  
Elizabeth L. Dunphy ◽  
Theron Johnson ◽  
Scott S. Auerbach ◽  
Edith H. Wang

ABSTRACT The TATA-binding protein (TBP)-associated factor TAFII250 is the largest component of the basal transcription factor IID (TFIID). A missense mutation that maps to the acetyltransferase domain of TAFII250 induces the temperature-sensitive (ts) mutant hamster cell lines ts13 and tsBN462 to arrest in late G1. At the nonpermissive temperature (39.5°C), transcription from only a subset of protein encoding genes, including the G1 cyclins, is dramatically reduced in the mutant cells. Here we demonstrate that the ability of the ts13 allele of TAFII250 to acetylate histones in vitro is temperature sensitive suggesting that this enzymatic activity is compromised at 39.5°C in the mutant cells. Mutagenesis of a putative acetyl coenzyme A binding site produced a TAFII250 protein that displayed significantly reduced histone acetyltransferase activity but retained TBP and TAFII150 binding. Expression of this mutant in ts13 cells was unable to complement the cell cycle arrest or transcriptional defect observed at 39.5°C. These data suggest that TAFII250 acetyltransferase activity is required for cell cycle progression and regulates the expression of essential proliferative control genes.


2008 ◽  
Vol 28 (24) ◽  
pp. 7442-7450 ◽  
Author(s):  
Sathyavageeswaran Shreeram ◽  
Weng Kee Hee ◽  
Dmitry V. Bulavin

ABSTRACT The cell division cycle 25A (Cdc25A) phosphatase is a critical regulator of cell cycle progression under normal conditions and after stress. Stress-induced degradation of Cdc25A has been proposed as a major way of delaying cell cycle progression. In vitro studies pointed toward serine 123 as a key site in regulation of Cdc25A stability after exposure to ionizing radiation (IR). To address the role of this phosphorylation site in vivo, we generated a knock-in mouse in which alanine was substituted for serine 123. The Cdc25 S123A knock-in mice appeared normal, and, unexpectedly, cells derived from them exhibited unperturbed cell cycle and DNA damage responses. In turn, we found that Cdc25A was present in centrosomes and that Cdc25A levels were not reduced after IR in knock-in cells. This resulted in centrosome amplification due to lack of induction of Cdk2 inhibitory phosphorylation after IR specifically in centrosomes. Further, Cdc25A knock-in animals appeared sensitive to IR-induced carcinogenesis. Our findings indicate that Cdc25A S123 phosphorylation is crucial for coupling centrosome duplication to DNA replication cycles after DNA damage and therefore is likely to play a role in the regulation of tumorigenesis.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2094 ◽  
Author(s):  
Roisin M. McAvera ◽  
Lisa J. Crawford

Genomic instability is a hallmark of cancer cells which results in excessive DNA damage. To counteract this, cells have evolved a tightly regulated DNA damage response (DDR) to rapidly sense DNA damage and promote its repair whilst halting cell cycle progression. The DDR functions predominantly within the context of chromatin and requires the action of chromatin-binding proteins to coordinate the appropriate response. TRIM24, TRIM28, TRIM33 and TRIM66 make up the transcriptional intermediary factor 1 (TIF1) family of chromatin-binding proteins, a subfamily of the large tripartite motif (TRIM) family of E3 ligases. All four TIF1 proteins are aberrantly expressed across numerous cancer types, and increasing evidence suggests that TIF1 family members can function to maintain genome stability by mediating chromatin-based responses to DNA damage. This review provides an overview of the TIF1 family in cancer, focusing on their roles in DNA repair, chromatin regulation and cell cycle regulation.


2019 ◽  
Author(s):  
Jie Sun ◽  
Di Wang ◽  
Yu Zhang ◽  
Qing Mu ◽  
Mei Li ◽  
...  

Abstract Background Compound Kushen Injection (CKI) has been clinically used in China for 15 years to treat various types of solid tumors, including colorectal cancer. Here we examine cell cycle arrest, induced autophagy, and mutant p53 pathways perturbed by CKI in colorectal cancer cells. We and other groups have shown that CKI alters p53 gene expression patterns and suppresses proliferation in colorectal cancer cells. Methods We measured the effect of CKI on cell proliferation, cell cycle progression and autophagy in sw480 and sw620 colorectal cancer cells in vitro, and carcinogenesis and the progression of azoxymethane/dextran sodium sulfate-induced colorectal cancer in ICR mice in vivo. We also used RNA sequencing to analyze mRNA expression altered by CKI, and further validated the expression of mutant p53 and several genes in the cell cycle pathway using reverse transcriptase-quantitative PCR and western blotting. Using network pharmacology (BATMAN-TCM database), we have also predicted the active ingredients in CKI involved in regulating the expression of mutant p53. Results We show evidence that CKI significantly suppressed proliferation and cell cycle progression, and induced autophagy of sw480 and sw620 cells in vitro; it also inhibited the development of inflammatory colorectal cancer in vivo. We also show that the down-regulated expression of mutant p53 and adjustments in several key genes related closely to cell-cycle progression. Furthermore, N-oxysophocarpine, lupenone, and geranylacetone were predicted to be the active ingredients of CKI involved in the down-regulated expression of mutant p53. Conclusion Our results indicate that CKI likely acts as a potential anti-cancer therapeutic agent that targets the cell cycle pathway, suggesting a key role in the development of a novel subsidiary therapeutic approach against mutant p53 in patients with colorectal cancer.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1655-1655
Author(s):  
Simone Boehrer ◽  
Lionel Ades ◽  
Nicolas Tajeddine ◽  
Lorenzo Galluzzi ◽  
Stephane de Botton ◽  
...  

Abstract Background: The hypomethylating agents azacytidine (AZA) and decitabine (DEC) have shown clinical efficacy in patients (pts) with MDS. There is in vitro evidence that both agents, in addition to their hypomethylating effect, also function by inducing apoptosis, cell cycle arrest and/or the activation of a DNA damage response (DDR). However, the exact contributions of those mechanisms of action and their functional interdependence remain to be defined. Methods: A panel of MDS (P39, MDS-1)- and AML (HL-60, KG-1)-derived cell lines were incubated with increasing dosages of AZA (1–2μM) and DEC (1–2μM) and the drugs capacity to induce apoptosis (DiOC6(3)/PI), cell cycle arrest (PI) and/or a DDR (immunoflourescence staining of P-ATM, P-Chk-1, P-Chk-2, γ-H2AX) were assessed in absence and presence of the ATM-inhibitor KU-55933 and the Chk-1 inhibitor UCN-01. Results: We show that both drugs induced dose-dependent apoptosis in myeloid cell lines: whereas AZA increased apoptosis in KG-1 and HL-60 by about 10% (48h, 2μM) the respective incubation with DEC augmented apoptosis by about 20% (HL-60) to 30% (KG-1). P39 cells were resistant to AZA and increased apoptosis by 15% after 48h of 2μM DEC, and MDS-1 cells were resistant to both drugs. In addition, both drugs induced a G2/M-arrest in P39 (+15% after 48h with 2μM of AZA or DEC) and HL-60 (+20% after 48h with 2μM of AZA or DEC) cells, but not in KG-1 and MDS-1 cells. Noteworthy, both drugs induced a DDR in the apoptosis-sensitive KG-1 cells (but not P39 cells) as evidenced by the appearance of nuclear P-ATM and γ-H2AX foci. Surprisingly, this activation of P-ATM did not induce the nuclear translocation of P-Chk-1-Ser317 or P-Chk-2-Ser68. To more clearly define the importance of the DDR in AZA- and DEC-induced apoptosis and G2/M-arrest, experiments were recapitulated in the presence of the ATM-inhibitor KU-55933 and the Chk-1 inhibitor UCN-01. Inhibition of ATM abrogated the apoptosis-inducing activity of AZA and DEC in KG-1 cells (without influencing cell cycle progression), whereas inhibition of Chk-1 remained without effect. In contrast, in P39 and HL-60 cells, inhibition of ATM neither affected cell cycle progression, nor sensitivity towards the drugs. Nevertheless, inhibition of Chk-1 by UCN-01 completely abrogated the G2/M-arresting effect of AZA (and diminished that of DEC) in P39 and HL-60 cells. Conclusions: We provide novel evidence for the cell-type dependent capacity of the hypomethylating agents 5-azacytidine and decitabine to induce apoptosis, cell-cycle arrest and DDR in cell lines representing different subtypes of MDS and AML. Moreover, we show the crucial role of ATM and Chk-1 activation – as part of the DDR – in mediating AZA and DEC apoptosis-inducing and cell cycle-arresting effects, respectively, providing evidence that hypomethylating agents confer their beneficial effects by employing different pathways of the DDR.


2016 ◽  
Vol 21 (8) ◽  
pp. 786-794 ◽  
Author(s):  
John M. Strelow ◽  
Min Xiao ◽  
Rachel N. Cavitt ◽  
Nathan C. Fite ◽  
Brandon J. Margolis ◽  
...  

SETD8 is the methyltransferase responsible for monomethylation of lysine at position 20 of the N-terminus of histone H4 (H4K20). This activity has been implicated in both DNA damage and cell cycle progression. Existing biochemical assays have utilized truncated enzymes containing the SET domain of SETD8 and peptide substrates. In this report, we present the development of a mechanistically balanced biochemical assay using full-length SETD8 and a recombinant nucleosome substrate. This improves the binding of SAM, SAH, and sinefungin by up to 10,000-fold. A small collection of inhibitors structurally related to SAM were screened and 40 compounds were identified that only inhibit SETD8 when a nucleosome substrate is used.


Sign in / Sign up

Export Citation Format

Share Document