Structure, function and biosynthesis of the Mycobacterium tuberculosis cell wall: arabinogalactan and lipoarabinomannan assembly with a view to discovering new drug targets

2007 ◽  
Vol 35 (5) ◽  
pp. 1325-1328 ◽  
Author(s):  
L.J. Alderwick ◽  
H.L. Birch ◽  
A.K. Mishra ◽  
L. Eggeling ◽  
G.S. Besra

In spite of effective antibiotics to treat TB (tuberculosis) since the early 1960s, we enter the new millennium with TB, currently the leading cause of death from a single infectious agent, killing more than three million people worldwide each year. Thus an understanding of drug-resistance mechanisms, the immunobiology of cell wall components to elucidate host–pathogen interactions and the discovery of new drug targets are now required for the treatment of TB. Above the plasma membrane is a classical chemotype IV PG (peptidoglycan) to which is attached the macromolecular structure, mycolyl-arabinogalactan, via a unique diglycosylphosphoryl bridge. This review will discuss the assembly of the mAGP (mycolyl-arabinogalactan-peptidoglycan), its associated glycolipids and the site of action of EMB (ethambutol), bringing forward a new era in TB research and focus on new drugs to combat multidrug resistant TB.

2008 ◽  
Vol 36 (4) ◽  
pp. 555-565 ◽  
Author(s):  
Veemal Bhowruth ◽  
Luke J. Alderwick ◽  
Alistair K. Brown ◽  
Apoorva Bhatt ◽  
Gurdyal S. Besra

In spite of effective antibiotics to treat TB (tuberculosis) since the early 1960s, we enter the new millennium with TB currently the leading cause of death from a single infectious agent, killing more than 3 million people worldwide each year. Thus an understanding of drug-resistance mechanisms, the immunobiology of cell wall components to elucidate host–pathogen interactions and the discovery of new drug targets are now required for the treatment of TB. Above the plasma membrane is a classical chemotype IV peptidoglycan to which is attached the macromolecular structure, mycolyl-arabinogalactan via a unique diglycosylphosphoryl bridge. The present review discusses the assembly of the mAGP (mycolyl-arabinogalactan–peptidoglycan) complex and the site of action of EMB (ethambutol), bringing forward a new era in TB research and focus for new drugs to combat multidrug-resistant TB.


2020 ◽  
Vol 17 (2) ◽  
pp. 147-153
Author(s):  
Shrayanee Das ◽  
Saif Hameed ◽  
Zeeshan Fatima

Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB), still remains a deadly disease worldwide. With prolonged usage of anti-TB drugs, the current therapeutic regimes are becoming ineffective, particularly due to emergence of drug resistance in MTB. Under such compelling circumstances, it is pertinent to look for new drug targets. The cell wall envelope of MTB is composed of unique lipids that are frequently targeted for anti-TB therapy. This is evident from the fact that most of the commonly used front line drugs (Isoniazid and Ethambutol) act on lipid machinery of MTB. Thus, despite the fact that much of the attention is towards understanding the MTB lipid biology, in search for identification of new drug targets, our knowledge of bacterial cell wall non-lipid components remains rudimentary and underappreciated. Better understanding of such components of mycobacterial cell structure will help in the identification of new drug targets that can be utilized on the persistent mycobacterium. This review at a common platform summarizes some of the non-lipid cell wall components in MTB that have potential to be exploited as future drug targets.


2020 ◽  
Vol 21 (17) ◽  
pp. 5971
Author(s):  
Najeeb Ullah ◽  
Hina Andaleeb ◽  
Celestin Nzanzu Mudogo ◽  
Sven Falke ◽  
Christian Betzel ◽  
...  

Plasmodium species are protozoan parasites causing the deadly malaria disease. They have developed effective resistance mechanisms against most antimalarial medication, causing an urgent need to identify new antimalarial drug targets. Ideally, new drugs would be generated to specifically target the parasite with minimal or no toxicity to humans, requiring these drug targets to be distinctly different from the host’s metabolic processes or even absent in the host. In this context, the essential presence of vitamin B6 biosynthesis enzymes in Plasmodium, the pyridoxal phosphate (PLP) biosynthesis enzyme complex, and its absence in humans is recognized as a potential drug target. To characterize the PLP enzyme complex in terms of initial drug discovery investigations, we performed structural analysis of the Plasmodium vivax PLP synthase domain (Pdx1), glutaminase domain (Pdx2), and Pdx1–Pdx2 (Pdx) complex (PLP synthase complex) by utilizing complementary bioanalytical techniques, such as dynamic light scattering (DLS), X-ray solution scattering (SAXS), and electron microscopy (EM). Our investigations revealed a dodecameric Pdx1 and a monodispersed Pdx complex. Pdx2 was identified in monomeric and in different oligomeric states in solution. Interestingly, mixing oligomeric and polydisperse Pdx2 with dodecameric monodisperse Pdx1 resulted in a monodispersed Pdx complex. SAXS measurements revealed the low-resolution dodecameric structure of Pdx1, different oligomeric structures for Pdx2, and a ring-shaped dodecameric Pdx1 decorated with Pdx2, forming a heteromeric 24-meric Pdx complex.


2016 ◽  
Vol 14 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Maurizio Zazzi ◽  
Alessandro Cozzi-Lepri ◽  
Mattia C.F. Prosperi

2010 ◽  
Vol 55 (1) ◽  
pp. 355-360 ◽  
Author(s):  
F. Brossier ◽  
N. Veziris ◽  
C. Truffot-Pernot ◽  
V. Jarlier ◽  
W. Sougakoff

ABSTRACTEthionamide (ETH) needs to be activated by the mono-oxygenase EthA, which is regulated by EthR, in order to be active againstMycobacterium tuberculosis. The activated drug targets the enzyme InhA, which is involved in cell wall biosynthesis. Resistance to ETH has been reported to result from various mechanisms, including mutations altering EthA/EthR, InhA and its promoter, the NADH dehydrogenase encoded byndh, and the MshA enzyme, involved in mycothiol biosynthesis. We searched for such mutations in 87 clinical isolates: 47 ETH-resistant (ETHr) isolates, 24 ETH-susceptible (ETHs) isolates, and 16 isolates susceptible to ETH but displaying an intermediate proportion of resistant cells (ETHSip; defined as ≥1% but <10% resistant cells). In 81% (38/47) of the ETHrisolates, we found mutations inethA,ethR, orinhAor its promoter, which mostly corresponded to new alterations inethAandethR. The 9 ETHrisolates without a mutation in these three genes (9/47, 19%) had no mutation inndh, and a single isolate had a mutation inmshA. Of the 16 ETHSipisolates, 7 had a mutation inethA, 8 had no detectable mutation, and 1 had a mutation inmshA. Finally, of the 24 ETHsisolates, 23 had no mutation in the studied genes and 1 displayed a yet unknown mutation in theinhApromoter. Globally, the mechanism of resistance to ETH remained unknown for 19% of the ETHrisolates, highlighting the complexity of the mechanisms of ETH resistance inM. tuberculosis.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e75245 ◽  
Author(s):  
Thomas R. Ioerger ◽  
Theresa O’Malley ◽  
Reiling Liao ◽  
Kristine M. Guinn ◽  
Mark J. Hickey ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 876
Author(s):  
María Alejandrina Martínez-González ◽  
Luis Manuel Peña-Rodríguez ◽  
Andrés Humberto Uc-Cachón ◽  
Jorge Bórquez ◽  
Mario J. Simirgiotis ◽  
...  

Tuberculosis causes more than 1.2 million deaths each year. Worldwide, it is the first cause of death by a single infectious agent. The emergence of drug-resistant strains has limited pharmacological treatment of the disease and today, new drugs are urgently needed. Semi-synthetic mulinanes have previously shown important activity against multidrug-resistant (MDR) Mycobacterium tuberculosis. In this investigation, a new set of semi-synthetic mulinanes were synthetized, characterized, and evaluated for their in vitro activity against three drug-resistant clinical isolates of M. tuberculosis: MDR, pre-extensively Drug-Resistant (pre-XDR), and extensively Drug-Resistant (XDR), and against the drug-susceptible laboratory reference strain H37Rv. Derivative 1a showed the best anti-TB activity (minimum inhibitory concentration [MIC] = 5.4 µM) against the susceptible strain and was twice as potent (MIC = 2.7 µM) on the MDR, pre-XDR, and XDR strains and also possessed a bactericidal effect. Derivative 1a was also tested for its anti-TB activity in mice infected with the MDR strain. In this case, 1a produced a significant reduction of pulmonary bacilli loads, six times lower than the control, when tested at 0.2536 mg/Kg. In addition, 1a demonstrated an adjuvant effect by shortening second-line chemotherapy. Finally, the selectivity index of >15.64 shown by 1a when tested on Vero cells makes this derivative an important candidate for future studies in the development of novel antitubercular agents.


Author(s):  
Thomas Lanyon-Hogg

Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Matthew B. McNeil ◽  
Theresa O’Malley ◽  
Devon Dennison ◽  
Catherine D. Shelton ◽  
Bjorn Sunde ◽  
...  

ABSTRACT The Mycobacterium tuberculosis protein MmpL3 performs an essential role in cell wall synthesis, since it effects the transport of trehalose monomycolates across the inner membrane. Numerous structurally diverse pharmacophores have been identified as inhibitors of MmpL3 largely based on the identification of resistant isolates with mutations in MmpL3. For some compounds, it is possible there are different primary or secondary targets. Here, we have investigated resistance to the spiral amine class of compounds. Isolation and sequencing of resistant mutants demonstrated that all had mutations in MmpL3. We hypothesized that if additional targets of this pharmacophore existed, then successive rounds to generate resistant isolates might reveal mutations in other loci. Since compounds were still active against resistant isolates, albeit with reduced potency, we isolated resistant mutants in this background at higher concentrations. After a second round of isolation with the spiral amine, we found additional mutations in MmpL3. To increase our chance of finding alternative targets, we ran a third round of isolation using a different molecule scaffold (AU1235, an adamantyl urea). Surprisingly, we obtained further mutations in MmpL3. Multiple mutations in MmpL3 increased the level and spectrum of resistance to different pharmacophores but did not incur a fitness cost in vitro. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. IMPORTANCE Mycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores.


2020 ◽  
Vol 10 (7) ◽  
pp. 2278 ◽  
Author(s):  
Catherine Vilchèze

Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.


Sign in / Sign up

Export Citation Format

Share Document