Functional analysis of the SUMOylation pathway in Drosophila

2008 ◽  
Vol 36 (5) ◽  
pp. 868-873 ◽  
Author(s):  
Ana Talamillo ◽  
Jonatan Sánchez ◽  
Rosa Barrio

SUMOylation, a reversible process used as a ‘fine-tuning’ mechanism to regulate the role of multiple proteins, is conserved throughout evolution. This post-translational modification affects several cellular processes by the modulation of subcellular localization, activity or stability of a variety of substrates. A growing number of proteins have been identified as targets for SUMOylation, although, for many of them, the role of SUMO conjugation on their function is unknown. The use of model systems might facilitate the study of SUMOylation implications in vivo. In the present paper, we have compiled what is known about SUMOylation in Drosophila melanogaster, where the use of genetics provides new insights on SUMOylation's biological roles.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 142 ◽  
Author(s):  
Ann Sutherland ◽  
Alyssa Lesko

Cell and tissue shape changes are the fundamental elements of morphogenesis that drive normal development of embryos into fully functional organisms. This requires a variety of cellular processes including establishment and maintenance of polarity, tissue growth and apoptosis, and cell differentiation, rearrangement, and migration. It is widely appreciated that the cytoskeletal networks play an important role in regulating many of these processes and, in particular, that pulsed actomyosin contractions are a core cellular mechanism driving cell shape changes and cell rearrangement. In this review, we discuss the role of pulsed actomyosin contractions during developmental morphogenesis, advances in our understanding of the mechanisms regulating actomyosin pulsing, and novel techniques to probe the role of pulsed actomyosin processes in in vivo model systems.


Author(s):  
Young-Min Han ◽  
Min Sun Kim ◽  
Juyeong Jo ◽  
Daiha Shin ◽  
Seung-Hae Kwon ◽  
...  

AbstractThe fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


2020 ◽  
Author(s):  
Abraham Más ◽  
Laura Castaño-Miquel ◽  
Lorenzo Carretero-Paulet ◽  
Núria Colomé ◽  
Francesc Canals ◽  
...  

AbstractPost-translational modification by Small Ubiquitin-related Modifier (SUMO) is an essential regulatory mechanism in eukaryotes. In the cell, SUMO conjugates are highly enriched in the nucleus and, consistently, SUMOylation machinery components are mainly nuclear. Nonetheless, cytosolic SUMO targets also exist and the mechanisms that facilitate SUMO conjugation in the cytosol are unknown. Here, we show that the nuclear localization of the Arabidopsis SUMO activating enzyme large subunit SAE2 is dependent on two nuclear localization signals, the canonical NLS1 and the non-canonical NLS2 identified and validated here. NLS2 is proteolytic processed from SAE2 during seed development, facilitating SAE2 enrichment in the cytosol. Results obtained using transgenic plants expressing different SAE2 proteoforms suggest that SAE2 cytosolic enrichment could constitute a rapid signal for growth arrest. Phylogenetic studies indicated that the Arabidopsis NLS1-NLS2 structural organization is conserved only in seed plants, providing a potential evolutionary role of cytosolic SUMOylation in seed appearance.


2019 ◽  
Vol 68 (3) ◽  
pp. 786-791 ◽  
Author(s):  
Ban Wang ◽  
Yanhui Li ◽  
Heather Wang ◽  
Jing Zhao ◽  
Yutong Zhao ◽  
...  

FOXO3a belongs to a family of transcription factors characterized by a conserved forkhead box DNA-binding domain. It has been known to regulate various cellular processes including cell proliferation, apoptosis and differentiation. Post-translational modifications of FOXO3a and their roles in the regulation of FOXO3a activity have been well-documented. FOXO3a can be phosphorylated, acetylated and ubiquitinated, however, the ISGylation of FOXO3a has not been reported. Protein overexpression, ISGylation and half-life were measured to determine the post-translational modification of FOXO3a. Human fibroblast cells were treated with transforming growth factor (TGF)-β1 to determine the role of FOXO3a ISGylation in TGF-β1 signaling. FOXO3a’s half-life is around 3.7 hours. Inhibition of the proteasome, not lysosome, extends its half-life. ISGylation, but not ubiquitination of FOXO3a, is increased in the presence of the proteasome inhibitor. Overexpression of ISG15 increases FOXO3a degradation, while overexpression of USP18 stabilizes FOXO3a through de-ISGylation. These results suggest that FOXO3a is degraded in the ISGylation and proteasome system, which can be reversed by USP18, an ISG15-specific deubiquitinase. This study reveals a new molecular mechanism by which ISGylation regulates FOXO3a degradation. Furthermore, we show that the overexpression of FOXO3a attenuated TGF-β1-induced fibronectin expression in human lung fibroblast cells without altering Smad2/3 expression and activation. FOXO3a can be ISGylated, which can regulate FOXO3a stability. USP18/FOXO3a pathway is a potential target for treating TGF-β1-mediated fibrotic diseases such as idiopathic pulmonary fibrosis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinyuan He ◽  
Yan Chen ◽  
Daisy Guiza Beltran ◽  
Maia Kelly ◽  
Bin Ma ◽  
...  

Abstract Protein tyrosine O-sulfation (PTS) plays a crucial role in extracellular biomolecular interactions that dictate various cellular processes. It also involves in the development of many human diseases. Regardless of recent progress, our current understanding of PTS is still in its infancy. To promote and facilitate relevant studies, a generally applicable method is needed to enable efficient expression of sulfoproteins with defined sulfation sites in live mammalian cells. Here we report the engineering, in vitro biochemical characterization, structural study, and in vivo functional verification of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells. We further apply this chemical biology tool to cell-based studies on the role of a sulfation site in the activation of chemokine receptor CXCR4 by its ligand. Our work will not only facilitate cellular studies of PTS, but also paves the way for economical production of sulfated proteins as therapeutic agents in mammalian systems.


2020 ◽  
Vol 117 (26) ◽  
pp. 15343-15353 ◽  
Author(s):  
Elsa Demes ◽  
Laetitia Besse ◽  
Paloma Cubero-Font ◽  
Béatrice Satiat-Jeunemaitre ◽  
Sébastien Thomine ◽  
...  

Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo. The development of biosensors to track subtle changes in intracellular parameters provides invaluable tools to tackle this challenging issue. AtCLCa (Arabidopsis thalianaChloride Channel a) is a vacuolar NO3−/H+exchanger regulating stomata aperture inA.thaliana. Here, we used a genetically encoded biosensor, ClopHensor, reporting the dynamics of cytosolic anion concentration and pH to monitor the activity of AtCLCa in vivo inArabidopsisguard cells. We first found that ClopHensor is not only a Cl−but also, an NO3−sensor. We were then able to quantify the variations of NO3−and pH in the cytosol. Our data showed that AtCLCa activity modifies cytosolic pH and NO3−. In an AtCLCa loss of function mutant, the cytosolic acidification triggered by extracellular NO3−and the recovery of pH upon treatment with fusicoccin (a fungal toxin that activates the plasma membrane proton pump) are impaired, demonstrating that the transport activity of this vacuolar exchanger has a profound impact on cytosolic homeostasis. This opens a perspective on the function of intracellular transporters of the Chloride Channel (CLC) family in eukaryotes: not only controlling the intraorganelle lumen but also, actively modifying cytosolic conditions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qian Peter Su ◽  
Wanqing Du ◽  
Qinghua Ji ◽  
Boxin Xue ◽  
Dong Jiang ◽  
...  

Abstract Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100–200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500–1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling.


2020 ◽  
Vol 295 (18) ◽  
pp. 5970-5983 ◽  
Author(s):  
Nataliya Gorinski ◽  
Daniel Wojciechowski ◽  
Daria Guseva ◽  
Dalia Abdel Galil ◽  
Franziska E. Mueller ◽  
...  

Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7−/− mice. Although palmitoylation of barttin in kidneys of Zdhhc7−/− animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7−/− mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.


2011 ◽  
Vol 436 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Laura Castaño-Miquel ◽  
Josep Seguí ◽  
L. Maria Lois

Protein modification by SUMO (small ubiquitin-related modifier) has emerged as an essential regulatory mechanism in eukaryotes. Even though the molecular mechanisms of SUMO conjugation/deconjugation are conserved, the number of SUMO machinery components and their degree of conservation are specific to each organism. In the present paper, we show data contributing to the notion that the four expressed Arabidopsis SUMO paralogues, AtSUMO1, 2, 3 and 5, have functionally diverged to a higher extent than their human orthologues. We have explored the degree of conservation of these paralogues and found that the surfaces involved in E1-activating enzyme recognition, and E2-conjugating enzyme and SIM (SUMO-interacting motif) non-covalent interactions are well conserved in AtSUMO1/2 isoforms, whereas AtSUMO3 shows a lower degree of conservation, and AtSUMO5 is the most divergent isoform. These differences are functionally relevant, since AtSUMO3 and 5 are deficient in establishing E2 non-covalent interactions, which has not been reported for any naturally occurring SUMO orthologue. In addition, AtSUMO3 is less efficiently conjugated than AtSUMO1/2, and AtSUMO5 shows the lowest conjugation level. A mutagenesis analysis revealed that decreases in conjugation rate and thioester-bond formation are the result of the non-conserved residues involved in E1-activating enzyme recognition that are present in AtSUMO3 and 5. The results of the present study support a role for the E1-activating enzyme in SUMO paralogue discrimination, providing a new mechanism to favour conjugation of the essential AtSUMO1/2 paralogues.


2018 ◽  
Author(s):  
Ana M. Oliveira Paiva ◽  
Annemieke H. Friggen ◽  
Liang Qin ◽  
Roxanne Douwes ◽  
Remus T. Dame ◽  
...  

AbstractThe maintenance and organization of the chromosome plays an important role in the development and survival of bacteria. Bacterial chromatin proteins are architectural proteins that bind DNA, modulate its conformation and by doing so affect a variety of cellular processes. No bacterial chromatin proteins of C. difficile have been characterized to date.Here, we investigate aspects of the C. difficile HupA protein, a homologue of the histone-like HU proteins of Escherichia coli. HupA is a 10 kDa protein that is present as a homodimer in vitro and self-interacts in vivo. HupA co-localizes with the nucleoid of C. difficile. It binds to the DNA without a preference for the DNA G+C content. Upon DNA binding, HupA induces a conformational change in the substrate DNA in vitro and leads to compaction of the chromosome in vivo.The present study is the first to characterize a bacterial chromatin protein in C. difficile and opens the way to study the role of chromosomal organization in DNA metabolism and on other cellular processes in this organism.


Sign in / Sign up

Export Citation Format

Share Document