Melanosomes on the move: a model to understand organelle dynamics

2011 ◽  
Vol 39 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Alistair N. Hume ◽  
Miguel C. Seabra

Advances in live-cell microscopy have revealed the extraordinarily dynamic nature of intracellular organelles. Moreover, movement appears to be critical in establishing and maintaining intracellular organization and organellar and cellular function. Motility is regulated by the activity of organelle-associated motor proteins, kinesins, dyneins and myosins, which move cargo along polar MT (microtubule) and actin tracks. However, in most instances, the motors that move specific organelles remain mysterious. Over recent years, pigment granules, or melanosomes, within pigment cells have provided an excellent model for understanding the molecular mechanisms by which motor proteins associate with and move intracellular organelles. In the present paper, we discuss recent discoveries that shed light on the mechanisms of melanosome transport and highlight future prospects for the use of pigment cells in unravelling general molecular mechanisms of intracellular transport.

2020 ◽  
Author(s):  
Fan Zheng ◽  
Fenfen Dong ◽  
Shuo Yu ◽  
Tianpeng Li ◽  
Yanze Jian ◽  
...  

ABSTRACTThe spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I, but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule crosslinker Ase1 as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.


Author(s):  
Haya Alshaabi ◽  
Meara Heininger ◽  
Brian Cunniff

Abstract Mitochondria are not passive bystanders aimlessly floating throughout our cell’s cytoplasm. Instead, mitochondria actively move, anchor, divide, fuse, self-destruct and transfer between cells in a coordinated fashion, all to ensure proper structure and position supporting cell function. The existence of the mitochondria in our cells has long been appreciated, but their dynamic nature and interaction with other subcellular compartments has only recently been fully realized with the advancement of high-resolution live-cell microscopy and improved fractionization techniques. The how and why that dictates positioning of mitochondria to specific subcellular sites is an ever-expanding research area. Furthermore, the advent of new and improved functional probes, sensitive to changes in subcellular metabolite levels has increased our understanding of local mitochondrial populations. In this review, we will address the evidence for intentional mitochondrial positioning in supporting subcellular mitochondrial metabolite levels, including calcium, adenosine triphosphate and reactive oxygen species and the role mitochondrial metabolites play in dictating cell outcomes.


2000 ◽  
Vol 8 (4) ◽  
pp. 30-32
Author(s):  
Philip Hockberger

During the past decade there has been remarkable progress in understanding the behavior and function of biological cells. Progress was accelerated by the development of microscopic imaging techniques and fluorescent dyes that allowed investigators to visualize dynamic processes within subcellular compartments in heterogenous populations of living cells. These capabilities led to exciting new discoveries in cellular and molecular studies of a wide variety of cell types.Efforts to study living cells under microscopic conditions are not without problems, however. The most vexing problem is phototoxicity caused by either illumination alone (endogenous toxicity) or illumination of fluorescent dyes loaded into cells (exogenous toxicity). In this report I provide an overview of these general types of toxicity as well as describe recent results that may shed light on how to reduce them.


2010 ◽  
Vol 191 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Elisa Dultz ◽  
Jan Ellenberg

In metazoa, new nuclear pore complexes (NPCs) form at two different cell cycle stages: at the end of mitosis concomitant with the reformation of the nuclear envelope and during interphase. However, the mechanisms of these assembly processes may differ. In this study, we apply high resolution live cell microscopy to analyze the dynamics of single NPCs in living mammalian cells during interphase. We show that nuclear growth and NPC assembly are correlated and occur at a constant rate throughout interphase. By analyzing the kinetics of individual NPC assembly events, we demonstrate that they are initiated by slow accumulation of the membrane nucleoporin Pom121 followed by the more rapid association of the soluble NPC subcomplex Nup107–160. This inverse order of recruitment and the overall much slower kinetics compared with postmitotic NPC assembly support the conclusion that the two processes occur by distinct molecular mechanisms.


2020 ◽  
Vol 295 (38) ◽  
pp. 13287-13298
Author(s):  
Fan Zheng ◽  
Fenfen Dong ◽  
Shuo Yu ◽  
Tianpeng Li ◽  
Yanze Jian ◽  
...  

The spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule cross-linker Ase1, as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.


Author(s):  
Li Ma ◽  
Qing Ouyang ◽  
Gordon C. Werthmann ◽  
Heather M. Thompson ◽  
Eric M. Morrow

2016 ◽  
Vol 27 (3) ◽  
pp. 572-587 ◽  
Author(s):  
Jing He ◽  
Jennifer L. Johnson ◽  
Jlenia Monfregola ◽  
Mahalakshmi Ramadass ◽  
Kersi Pestonjamasp ◽  
...  

The molecular mechanisms that regulate late endosomal maturation and function are not completely elucidated, and direct evidence of a calcium sensor is lacking. Here we identify a novel mechanism of late endosomal maturation that involves a new molecular interaction between the tethering factor Munc13-4, syntaxin 7, and VAMP8. Munc13-4 binding to syntaxin 7 was significantly increased by calcium. Colocalization of Munc13-4 and syntaxin 7 at late endosomes was demonstrated by high-resolution and live-cell microscopy. Munc13-4–deficient cells show increased numbers of significantly enlarged late endosomes, a phenotype that was mimicked by the fusion inhibitor chloroquine in wild-type cells and rescued by expression of Munc13-4 but not by a syntaxin 7–binding–deficient mutant. Late endosomes from Munc13-4-KO neutrophils show decreased degradative capacity. Munc13-4–knockout neutrophils show impaired endosomal-initiated, TLR9-dependent signaling and deficient TLR9-specific CD11b up-regulation. Thus we present a novel mechanism of late endosomal maturation and propose that Munc13-4 regulates the late endocytic machinery and late endosomal–associated innate immune cellular functions.


2000 ◽  
Vol 113 (24) ◽  
pp. 4379-4389 ◽  
Author(s):  
A.W. Hunter ◽  
L. Wordeman

The interplay between microtubules and microtubule-based motors is fundamental to basic aspects of cellular function, such as the intracellular transport of organelles and alterations in cellular morphology during cell locomotion and division. Motor proteins are unique in that they couple nucleotide hydrolysis to force production that can do work. The force transduction by proteins belonging to the kinesin and dynein superfamilies has been thought only to power movement of these motors along the surface of microtubules; however, a growing body of evidence, both genetic and biochemical, suggests that motors can also directly influence the polymerization dynamics of microtubules. For example, at the vertebrate kinetochore, motors interact directly with microtubule ends and modulate polymerization dynamics to orchestrate chromosome movements during mitosis. Although a role for motors in regulating microtubule length has been established, the mechanisms used by motors to promote microtubule growth or shrinkage are unclear, as is an understanding of why cells might choose motors to control dynamics rather than a variety of non-motor proteins known to affect microtubule stability. Elucidation of the exact mechanisms by which motors alter the exchange of tubulin subunits at microtubule ends in vitro may shed light on how microtubule stability is regulated to produce the array of dynamic behavior seen in cells.


2021 ◽  
Vol 22 (5) ◽  
pp. 2776
Author(s):  
Selma Yilmaz Dejgaard ◽  
John F. Presley

Historically, studies of intracellular membrane trafficking have focused on the secretory and endocytic pathways and their major organelles. However, these pathways are also directly implicated in the biogenesis and function of other important intracellular organelles, the best studied of which are peroxisomes and lipid droplets. There is a large recent body of work on these organelles, which have resulted in the introduction of new paradigms regarding the roles of membrane trafficking organelles. In this review, we discuss the roles of membrane trafficking in the life cycle of lipid droplets. This includes the complementary roles of lipid phase separation and proteins in the biogenesis of lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature lipid droplets to membranes by lipidic bridges and by more conventional protein tethers. We also discuss the catabolism of neutral lipids, which in part results from the interaction of lipid droplets with cytosolic molecules, but with important roles for both macroautophagy and microautophagy. Finally, we address their eventual demise, which involves interactions with the autophagocytotic machinery. We pay particular attention to the roles of small GTPases, particularly Rab18, in these processes.


Sign in / Sign up

Export Citation Format

Share Document