scholarly journals Regulation of large conductance calcium- and voltage-activated potassium (BK) channels by S-palmitoylation

2013 ◽  
Vol 41 (1) ◽  
pp. 67-71 ◽  
Author(s):  
Michael J. Shipston

BK (large conductance calcium- and voltage-activated potassium) channels are important determinants of physiological control in the nervous, endocrine and vascular systems with channel dysfunction associated with major disorders ranging from epilepsy to hypertension and obesity. Thus the mechanisms that control channel surface expression and/or activity are important determinants of their (patho)physiological function. BK channels are S-acylated (palmitoylated) at two distinct sites within the N- and C-terminus of the pore-forming α-subunit. Palmitoylation of the N-terminus controls channel trafficking and surface expression whereas palmitoylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. Recent studies are beginning to reveal mechanistic insights into how palmitoylation controls channel trafficking and cross-talk with phosphorylation-dependent signalling pathways. Intriguingly, each site of palmitoylation is regulated by distinct zDHHCs (palmitoyl acyltransferases) and APTs (acyl thioesterases). This supports that different mechanisms may control substrate specificity by zDHHCs and APTs even within the same target protein. As palmitoylation is dynamically regulated, this fundamental post-translational modification represents an important determinant of BK channel physiology in health and disease.

2011 ◽  
Vol 300 (3) ◽  
pp. C435-C446 ◽  
Author(s):  
Jun-Ping Bai ◽  
Alexei Surguchev ◽  
Dhasakumar Navaratnam

Changing kinetics of large-conductance potassium (BK) channels in hair cells of nonmammalian vertebrates, including the chick, plays a critical role in electrical tuning, a mechanism used by these cells to discriminate between different frequencies of sound. BK currents are less abundant in low-frequency hair cells and show large openings in response to a rise in intracellular Ca2+ at a hair cell's operating voltage range (spanning −40 to −60 mV). Although the molecular underpinnings of its function in hair cells are poorly understood, it is established that BK channels consist of a pore-forming α-subunit (Slo) and a number of accessory subunits. Currents from the α (Slo)-subunit alone do not show dramatic increases in response to changes in Ca2+ concentrations at −50 mV. We have cloned the chick β4- and β1-subunits and show that these subunits are preferentially expressed in low-frequency hair cells, where they decrease Slo surface expression. The β4-subunit in particular is responsible for the BK channel's increased responsiveness to Ca2+ at a hair cell's operating voltage. In contrast, however, the increases in relaxation times induced by both β-subunits suggest additional mechanisms responsible for BK channel function in hair cells.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Yenisleidy Lorenzo-Ceballos ◽  
Willy Carrasquel-Ursulaez ◽  
Karen Castillo ◽  
Osvaldo Alvarez ◽  
Ramon Latorre

Allosteric interactions between the voltage-sensing domain (VSD), the Ca2+-binding sites, and the pore domain govern the mammalian Ca2+- and voltage-activated K+ (BK) channel opening. However, the functional relevance of the crosstalk between the Ca2+- and voltage-sensing mechanisms on BK channel gating is still debated. We examined the energetic interaction between Ca2+ binding and VSD activation by investigating the effects of internal Ca2+ on BK channel gating currents. Our results indicate that Ca2+ sensor occupancy has a strong impact on VSD activation through a coordinated interaction mechanism in which Ca2+ binding to a single α-subunit affects all VSDs equally. Moreover, the two distinct high-affinity Ca2+-binding sites contained in the C-terminus domains, RCK1 and RCK2, contribute equally to decrease the free energy necessary to activate the VSD. We conclude that voltage-dependent gating and pore opening in BK channels is modulated to a great extent by the interaction between Ca2+ sensors and VSDs.


2012 ◽  
Vol 303 (2) ◽  
pp. C143-C150 ◽  
Author(s):  
Alexei Surguchev ◽  
Jun-Ping Bai ◽  
Powrnima Joshi ◽  
Dhasakumar Navaratnam

Large conductance (BK) calcium activated potassium channels (Slo) are ubiquitous and implicated in a number of human diseases including hypertension and epilepsy. BK channels consist of a pore forming α-subunit (Slo) and a number of accessory subunits. In hair cells of nonmammalian vertebrates these channels play a critical role in electrical resonance, a mechanism of frequency selectivity. Hair cell BK channel clusters on the surface and currents increase along the tonotopic axis and contribute significantly to the responsiveness of these hair cells to sounds of high frequency. In contrast, messenger RNA levels encoding the Slo gene show an opposite decrease in high frequency hair cells. To understand the molecular events underlying this paradox, we used a yeast two-hybrid screen to isolate binding partners of Slo. We identified Rack1 as a Slo binding partner and demonstrate that PKC activation increases Slo surface expression. We also establish that increased Slo recycling of endocytosed Slo is at least partially responsible for the increased surface expression of Slo. Moreover, analysis of several PKC phosphorylation site mutants confirms that the effects of PKC on Slo surface expression are likely indirect. Finally, we show that Slo clusters on the surface of hair cells are also increased by increased PKC activity and may contribute to the increasing amounts of channel clusters on the surface of high-frequency hair cells.


2019 ◽  
Author(s):  
Yenisleidy Lorenzo-Ceballos ◽  
Willy Carrasquel-Ursulaez ◽  
Karen Castillo ◽  
Osvaldo Alvarez ◽  
Ramon Latorre

AbstractAllosteric interplays between voltage-sensing domains (VSD), Ca2+-binding sites, and the pore domain govern the Ca2+- and voltage-activated K+ (BK) channel opening. However, the functional relevance of the Ca2+- and voltage-sensing mechanisms crosstalk on BK channel gating is still debated. We examined the energetic interaction between Ca2+ binding and VSD activation measuring and analyzing the effects of internal Ca2+ on BK channels gating currents. Our results indicate that the Ca2+ sensors occupancy has a strong impact on the VSD activation through a coordinated interaction mechanism in which Ca2+ binding to a single α-subunit affects all VSDs equally. Moreover, the two distinct high-affinity Ca2+-binding sites contained in the C-terminus domains, RCK1 and RCK2, appear to contribute equally to decrease the free energy necessary to activate the VSD. We conclude that voltage-dependent gating and pore opening in BK channels is modulated to a great extent by the interaction between Ca2+ sensors and VSDs.


2007 ◽  
Vol 97 (1) ◽  
pp. 62-69 ◽  
Author(s):  
X. Sun ◽  
D. Zhou ◽  
P. Zhang ◽  
E. G. Moczydlowski ◽  
G. G. Haddad

In this study, we examined the effect of arachidonic acid (AA) on the BK α-subunit with or without β-subunits expressed in Xenopus oocytes. In excised patches, AA potentiated the hSlo-α current and slowed inactivation only when β2/3 subunit was co-expressed. The β2-subunit–dependent modulation by AA persisted in the presence of either superoxide dismutase or inhibitors of AA metabolism such as nordihydroguaiaretic acid and eicosatetraynoic acid, suggesting that AA acts directly rather than through its metabolites. Other cis unsaturated fatty acids (docosahexaenoic and oleic acid) also enhanced hSlo-α + β2 currents and slowed inactivation, whereas saturated fatty acids (palmitic, stearic, and caprylic acid) were without effect. Pretreatment with trypsin to remove the cytosolic inactivation domain largely occluded AA action. Intracellularly applied free synthetic β2-ball peptide induced inactivation of the hSlo-α current, and AA failed to enhance this current and slow the inactivation. These results suggest that AA removes inactivation by interacting, possibly through conformational changes, with β2 to prevent the inactivation ball from reaching its receptor. Our data reveal a novel mechanism of β-subunit–dependent modulation of BK channels by AA. In freshly dissociated mouse neocortical neurons, AA eliminated a transient component of whole cell K+ currents. BK channel inactivation may be a specific mechanism by which AA and other unsaturated fatty acids influence neuronal death/survival in neuropathological conditions.


2020 ◽  
Vol 295 (49) ◽  
pp. 16487-16496 ◽  
Author(s):  
Heather McClafferty ◽  
Hamish Runciman ◽  
Michael J. Shipston

S-Acylation, the reversible post-translational lipid modification of proteins, is an important mechanism to control the properties and function of ion channels and other polytopic transmembrane proteins. However, although increasing evidence reveals the role of diverse acyl protein transferases (zDHHC) in controlling ion channel S-acylation, the acyl protein thioesterases that control ion channel deacylation are very poorly defined. Here we show that ABHD17a (α/β-hydrolase domain-containing protein 17a) deacylates the stress-regulated exon domain of large conductance voltage- and calcium-activated potassium (BK) channels inhibiting channel activity independently of effects on channel surface expression. Importantly, ABHD17a deacylates BK channels in a site-specific manner because it has no effect on the S-acylated S0–S1 domain conserved in all BK channels that controls membrane trafficking and is deacylated by the acyl protein thioesterase Lypla1. Thus, distinct S-acylated domains in the same polytopic transmembrane protein can be regulated by different acyl protein thioesterases revealing mechanisms for generating both specificity and diversity for these important enzymes to control the properties and functions of ion channels.


2018 ◽  
Vol 45 (4) ◽  
pp. 1603-1616 ◽  
Author(s):  
Bailin Liu ◽  
Yanping Liu ◽  
Ruixiu Shi ◽  
Xueqin Feng ◽  
Xiang Li ◽  
...  

Background/Aims: Chronic hypoxia in utero could impair vascular functions in the offspring, underlying mechanisms are unclear. This study investigated functional alteration in large-conductance Ca2+-activated K+ (BK) channels in offspring mesenteric arteries following prenatal hypoxia. Methods: Pregnant rats were exposed to normoxic control (21% O2, Con) or hypoxic (10.5% O2, Hy) conditions from gestational day 5 to 21, their 7-month-old adult male offspring were tested for blood pressure, vascular BK channel functions and expression using patch clamp and wire myograh technique, western blotting, and qRT-PCR. Results: Prenatal hypoxia increased pressor responses and vasoconstrictions to phenylephrine in the offspring. Whole-cell currents density of BK channels and amplitude of spontaneous transient outward currents (STOCs), not the frequency, were significantly reduced in Hy vascular myocytes. The sensitivity of BK channels to voltage, Ca2+, and tamoxifen were reduced in Hy myocytes, whereas the number of channels per patch and the single-channel conductance were unchanged. Prenatal hypoxia impaired NS1102- and tamoxifen-mediated relaxation in mesenteric arteries precontracted with phenylephrine in the presence of Nω-nitro-L-arginine methyl ester. The mRNA and protein expression of BK channel β1, not the α-subunit, was decreased in Hy mesenteric arteries. Conclusions: Impaired BK channel β1-subunits in vascular smooth muscle cells contributed to vascular dysfunction in the offspring exposed to prenatal hypoxia.


2008 ◽  
Vol 295 (3) ◽  
pp. F780-F788 ◽  
Author(s):  
Genevieve Estilo ◽  
Wen Liu ◽  
Nuria Pastor-Soler ◽  
Phillip Mitchell ◽  
Marcelo D. Carattino ◽  
...  

Apical large-conductance Ca2+-activated K+ (BK) channels in the cortical collecting duct (CCD) mediate flow-stimulated K+ secretion. Dietary K+ loading for 10–14 days leads to an increase in BK channel mRNA abundance, enhanced flow-stimulated K+ secretion in microperfused CCDs, and a redistribution of immunodetectable channels from an intracellular pool to the apical membrane (Najjar F, Zhou H, Morimoto T, Bruns JB, Li HS, Liu W, Kleyman TR, Satlin LM. Am J Physiol Renal Physiol 289: F922–F932, 2005). To test whether this adaptation was mediated by a K+-induced increase in aldosterone, New Zealand White rabbits were fed a low-Na+ (LS) or high-Na+ (HS) diet for 7–10 days to alter circulating levels of aldosterone but not serum K+ concentration. Single CCDs were isolated for quantitation of BK channel subunit (total, α-splice variants, β-isoforms) mRNA abundance by real-time PCR and measurement of net transepithelial Na+ (JNa) and K+ (JK) transport by microperfusion; kidneys were processed for immunolocalization of BK α-subunit by immunofluorescence microscopy. At the time of death, LS rabbits excreted no urinary Na+ and had higher circulating levels of aldosterone than HS animals. The relative abundance of BK α-, β2-, and β4-subunit mRNA and localization of immunodetectable α-subunit were similar in CCDs from LS and HS animals. In response to an increase in tubular flow rate from ∼1 to 5 nl·min−1·mm−1, the increase in JNa was greater in LS vs. HS rabbits, yet the flow-stimulated increase in JK was similar in both groups. These data suggest that aldosterone does not contribute to the regulation of BK channel expression/activity in response to dietary K+ loading.


2010 ◽  
Vol 298 (6) ◽  
pp. F1416-F1423 ◽  
Author(s):  
Shaohua Chang ◽  
Cristiano Mendes Gomes ◽  
Joseph A. Hypolite ◽  
James Marx ◽  
Jaber Alanzi ◽  
...  

Large-conductance voltage- and calcium-activated potassium (BK) channels have been shown to play a role in detrusor overactivity (DO). The goal of this study was to determine whether bladder outlet obstruction-induced DO is associated with downregulation of BK channels and whether BK channels affect myosin light chain 20 (MLC20) phosphorylation in detrusor smooth muscle (DSM). Partial bladder outlet obstruction (PBOO) was surgically induced in male New Zealand White rabbits. The rabbit PBOO model shows decreased voided volumes and increased voiding frequency. DSM from PBOO rabbits also show enhanced spontaneous contractions compared with control. Both BK channel α- and β-subunits were significantly decreased in DSM from PBOO rabbits. Immunostaining shows BKβ mainly expressed in DSM, and its expression is much less in PBOO DSM compared with control DSM. Furthermore, a translational study was performed to see whether the finding discovered in the animal model can be translated to human patients. The urodynamic study demonstrates several overactive DSM contractions during the urine-filling stage in benign prostatic hyperplasia (BPH) patients with DO, while DSM is very quiet in BPH patients without DO. DSM biopsies revealed significantly less BK channel expression at both mRNA and protein levels. The degree of downregulation of the BK β-subunit was greater than that of the BK α-subunit, and the downregulation of BK was only associated with DO, not BPH. Finally, the small interference (si) RNA-mediated downregulation of the BK β-subunit was employed to study the effect of BK depletion on MLC20 phosphorylation. siRNA-mediated BK channel reduction was associated with an increased MLC20 phosphorylation level in cultured DSM cells. In summary, PBOO-induced DO is associated with downregulation of BK channel expression in the rabbit model, and this finding can be translated to human BPH patients with DO. Furthermore, downregulation of the BK channel may contribute to DO by increasing the basal level of MLC20 phosphorylation.


2008 ◽  
Vol 131 (6) ◽  
pp. 537-548 ◽  
Author(s):  
Guoxia Liu ◽  
Sergey I. Zakharov ◽  
Lin Yang ◽  
Shi-Xian Deng ◽  
Donald W. Landry ◽  
...  

The position and role of the unique N-terminal transmembrane (TM) helix, S0, in large-conductance, voltage- and calcium-activated potassium (BK) channels are undetermined. From the extents of intra-subunit, endogenous disulfide bond formation between cysteines substituted for the residues just outside the membrane domain, we infer that the extracellular flank of S0 is surrounded on three sides by the extracellular flanks of TM helices S1 and S2 and the four-residue extracellular loop between S3 and S4. Eight different double cysteine–substituted alphas, each with one cysteine in the S0 flank and one in the S3–S4 loop, were at least 90% disulfide cross-linked. Two of these alphas formed channels in which 90% cross-linking had no effect on the V50 or on the activation and deactivation rate constants. This implies that the extracellular ends of S0, S3, and S4 are close in the resting state and move in concert during voltage sensor activation. The association of S0 with the gating charge bearing S3 and S4 could contribute to the considerably larger electrostatic energy required to activate the BK channel compared with typical voltage-gated potassium channels with six TM helices.


Sign in / Sign up

Export Citation Format

Share Document