scholarly journals About the dangers, costs and benefits of living an aerobic lifestyle

2014 ◽  
Vol 42 (4) ◽  
pp. 917-921 ◽  
Author(s):  
Daniela Knoefler ◽  
Lars I.O. Leichert ◽  
Maike Thamsen ◽  
Claudia M. Cremers ◽  
Dana Reichmann ◽  
...  

The era in which ROS (reactive oxygen species) were simply the ‘bad boys of biology’ is clearly over. High levels of ROS are still rightfully considered to be toxic to many cellular processes and, as such, contribute to disease conditions and cell death. However, the high toxicity of ROS is also extremely beneficial, particularly as it is used to kill invading micro-organisms during mammalian host defence. Moreover, a transient, often more localized, increase in ROS levels appears to play a major role in signal transduction processes and positively affects cell growth, development and differentiation. At the heart of all these processes are redox-regulated proteins, which use oxidation-sensitive cysteine residues to control their function and by extension the function of the pathways that they are part of. Our work has contributed to changing the view about ROS through: (i) our characterization of Hsp33 (heat-shock protein 33), one of the first redox-regulated proteins identified, whose function is specifically activated by ROS, (ii) the development of quantitative tools that reveal extensive redox-sensitive processes in bacteria and eukaryotes, and (iii) the discovery of a link between early exposure to oxidants and aging. Our future research programme aims to generate an integrated and system-wide view of the beneficial and deleterious effects of ROS with the central goal to develop more effective antioxidant strategies and more powerful antimicrobial agents.

1983 ◽  
Vol 15 (6-7) ◽  
pp. 1-11 ◽  
Author(s):  
Per-Edvin Persson

The significance of off-flavours in water and fisheries management is briefly discussed, as are guidelines for future research. In order to elucidate the sources and causes of off-flavours in natural waters, an integration of sensory, chemical and biological research is needed. Sensory characterization of off-flavours often involves taste and odour threshold measurements. Current techniques at water works are critically discussed. The need for a more comprehensive approach, where sensory response is related to stimulus intensity over a large range of magnitudes, is stressed. The use of consumer panels in sensory assessment of water quality is advocated. Sensory methods are useful screening methods. Chemical analyses should be related to the sensory characteristics of the compounds analyzed. Recent research on biogenic off-flavours in natural waters have indicated that they are more, complex than originally conceived. Criteria for establishing the odour production by organisms are presented. Compilations of scientifically proved taste and odour producing algae and micro-organisms may be useful, but more research is needed on the reasons for variability of their odour production. The development of relevant abatement techniques depends on a more complete understanding of the etiology of off-flavours in natural waters.


2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Maria Lucas ◽  
Eugenia Mato ◽  
Silvia Barceló-Batllori ◽  
Ramon Gomis ◽  
Anna Novials

We have previously reported the identification of a pancreata mitoxantrone-resistant cell population which expressed the ABCG2 transporter with a pancreatic stellate cells phenotype (PaSC) and ability of secreting insulin after inducing their differentiation. The characterization of the secretome of this cell population by two-dimensional electrophoresis (2D) coupled with mass spectrometry MALDI-TOF was able to identify seventy-six protein spots involved in different cellular processes: development/differentiation, proteases, immune response, and other. Moreover, Ingenuity Pathway Analysis displayed several significant networks and TGFβ1 molecule was identified as a central node of one of them. The effect of this active molecule secreted in the conditioned medium was investigated in ductal cell line (ARIP). The results showed that the conditioned medium inhibited their proliferation without affecting their cell viability. Additionally, they showed an upregulation of PDX1 and downregulation of CK19. The rate of ARIP cell proliferation was recovered, but no effects on the gene expression were observed after using TGFβ1-neutralising antibody. Proteins associated with cell growth, development and differentiation such as PEDF, LIF, and Wnt5b, identified in the secretome, could be involved in the observed transcription changes. These finding may suggest a new paracrine action of PaSCs involved in the proliferation and differentiation pathways not yet identified.


2019 ◽  
Vol 4 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Alison E. Fowler ◽  
Rebecca E. Irwin ◽  
Lynn S. Adler

Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.


Author(s):  
P. Bhavani ◽  
T. G. Amuthavally

The research for the review of literature is one of the first and foremost important steps in the research process. The search for related literature is a time consuming but fruitful phase of any research programme. In this article, the researcher was made an attempt to present findings from the collected related literature on parenting styles and emotional intelligence of adolescents. The main motto behind this article is to review of related literature from 1990 to till date. The paper also summarizes the findings of the studies on Emotional Intelligence and Parenting Styles giving a direction for future research.


Author(s):  
Livio Cricelli ◽  
Michele Grimaldi ◽  
Silvia Vermicelli

AbstractIn recent years, Open Innovation (OI) and crowdsourcing have been very popular topics in the innovation management literature, attracting significant interest and attention, and inspiring a rich production of publications. Although these two topics share common themes and address similar managerial challenges, to the best of our knowledge, there is no systematic literature review that digs deep into the intersection of both fields. To fill in this gap a joint review of crowdsourcing and OI topics is both timely and of interest. Therefore, the main objective of this study is to carry out a comprehensive, systematic, and objective review of academic research to help shed light on the relationship between OI and crowdsourcing. For this purpose, we reviewed the literature published on these two topics between 2008 and 2019, applying two bibliometric techniques, co-citation and co-word analysis. We obtained the following results: (i) we provide a qualitative analysis of the emerging and trending themes, (ii) we discuss a characterization of the intersection between OI and crowdsourcing, identifying four dimensions (strategic, managerial, behavioral, and technological), (iii) we present a schematic reconceptualization of the thematic clusters, proposing an integrated view. We conclude by suggesting promising opportunities for future research.


2021 ◽  
Vol 22 (14) ◽  
pp. 7390
Author(s):  
Nicole Wesch ◽  
Frank Löhr ◽  
Natalia Rogova ◽  
Volker Dötsch ◽  
Vladimir V. Rogov

Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Silvana Alfei ◽  
Gabriella Piatti ◽  
Debora Caviglia ◽  
Anna Maria Schito

The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.


Author(s):  
Muhammed Jamsheer K ◽  
Manoj Kumar ◽  
Vibha Srivastava

AbstractThe Snf1-related protein kinase 1 (SnRK1) is the plant homolog of the heterotrimeric AMP-activated protein kinase/sucrose non-fermenting 1 (AMPK/Snf1), which works as a major regulator of growth under nutrient-limiting conditions in eukaryotes. Along with its conserved role as a master regulator of sugar starvation responses, SnRK1 is involved in controlling the developmental plasticity and resilience under diverse environmental conditions in plants. In this review, through mining and analyzing the interactome and phosphoproteome data of SnRK1, we are highlighting its role in fundamental cellular processes such as gene regulation, protein synthesis, primary metabolism, protein trafficking, nutrient homeostasis, and autophagy. Along with the well-characterized molecular interaction in SnRK1 signaling, our analysis highlights several unchartered regions of SnRK1 signaling in plants such as its possible communication with chromatin remodelers, histone modifiers, and inositol phosphate signaling. We also discuss potential reciprocal interactions of SnRK1 signaling with other signaling pathways and cellular processes, which could be involved in maintaining flexibility and homeostasis under different environmental conditions. Overall, this review provides a comprehensive overview of the SnRK1 signaling network in plants and suggests many novel directions for future research.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Desmond E. P. Klenam ◽  
Michael O. Bodunrin ◽  
Stefania Akromah ◽  
Emmanuel Gikunoo ◽  
Anthony Andrews ◽  
...  

Abstract An overview of the characterisation of rust by colour is presented. Each distinct rust colour is caused by atmospheric impurities, high or low moisture content and high or low oxygen environment over time. Yellow rust is mainly due to the high moisture environment over a period of time, which drips. Brown rust is dry, crusty and due to water and oxygen contact with localised patches on component surfaces. Black rust, the most stable form, occurs in low moisture and low oxygen environment. The rust residue shows where the reaction started, especially in contact with chlorides. The causative factors of red rust are atmospheric and similar to black rust in a chloride-containing environment. The effect of packaging, manufacturing and environmental factors on rust colour is briefly discussed. Visual characterization of rust could pre-empt root causes and analytical tools for validation. The limitations of these concepts are mentioned and directions for future research highlighted.


Author(s):  
Laura Barral-Fraga ◽  
María Teresa Barral ◽  
Keeley L. MacNeill ◽  
Diego Martiñá-Prieto ◽  
Soizic Morin ◽  
...  

This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.


Sign in / Sign up

Export Citation Format

Share Document