Interactions of peripheral proteins with model membranes as viewed by molecular dynamics simulations

2014 ◽  
Vol 42 (5) ◽  
pp. 1418-1424 ◽  
Author(s):  
Antreas C. Kalli ◽  
Mark S. P. Sansom

Many cellular signalling and related events are triggered by the association of peripheral proteins with anionic lipids in the cell membrane (e.g. phosphatidylinositol phosphates or PIPs). This association frequently occurs via lipid-binding modules, e.g. pleckstrin homology (PH), C2 and four-point-one, ezrin, radixin, moesin (FERM) domains, present in peripheral and cytosolic proteins. Multiscale simulation approaches that combine coarse-grained and atomistic MD simulations may now be applied with confidence to investigate the molecular mechanisms of the association of peripheral proteins with model bilayers. Comparisons with experimental data indicate that such simulations can predict specific peripheral protein–lipid interactions. We discuss the application of multiscale MD simulation and related approaches to investigate the association of peripheral proteins which contain PH, C2 or FERM-binding modules with lipid bilayers of differing phospholipid composition, including bilayers containing multiple PIP molecules.

2020 ◽  
Author(s):  
Andreas Haahr Larsen ◽  
Mark S.P. Sansom

AbstractC2 domains facilitate protein-lipid interaction in cellular recognition and signalling processes. They possess a β-sandwich structure, with either type I or type II topology. C2 domains can interact with anionic lipid bilayers in either a Ca2+-dependent or a Ca2+-independent manner. The mechanism of recognition of anionic lipids by Ca2+-independent C2 domains is incompletely understood. We have used molecular dynamics (MD) simulations to explore the membrane interactions of six Ca2+– independent C2 domains, from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2. In coarse grained MD simulations these C2 domains bound to lipid bilayers, forming transient interactions with zwitterionic (phosphatidylcholine, PC) bilayers compared to long lived interactions with anionic bilayers also containing either phosphatidylserine (PS) or PS and phosphatidylinositol bisphosphate (PIP2). Type I C2 domains bound non-canonically via the front, back or side of the β sandwich, whereas type II C2 domains bound canonically, via the top loops (as is typically the case for Ca2+-dependent C2 domains). C2 domains interacted strongly (up to 120 kJ/mol) with membranes containing PIP2 causing the bound anionic lipids to clustered around the protein. The C2 domains bound less strongly to anionic membranes without PIP2 (<50 kJ/mol), and most weakly to neutral membranes (<33 kJ/mol). Productive binding modes were identified and further analysed in atomistic simulations. For PTEN and SHIP2, CG simulations were also performed of the intact enzymes (i.e. phosphatase domain plus C2 domain) with PIP2-contating bilayers and the roles of the two domains in membrane localization were compared. From a methodological perspective, these studies establish a multiscale simulation protocol for studying membrane binding/recognition proteins, capable of revealing binding modes alongside details of lipid binding affinity and specificity.


2019 ◽  
Author(s):  
Qinrui Wang ◽  
George Hedger ◽  
Prafulla Aryal ◽  
Mariana Grieben ◽  
Chady Nasrallah ◽  
...  

AbstractPolycystin-2 (PC2) is a member of the TRPP subfamily of TRP channels and is present in ciliary membranes of the kidney. PC2 can be either homo-tetrameric, or heterotetrameric with PC1. PC2 shares a common transmembrane fold with other TRP channels, in addition to having a novel extracellular domain. Several TRP channels have been suggested to be regulated by lipids, including phosphatidylinositol phosphates (PIPs). We have combined molecular dynamics simulations with cryoelectron microscopy to explore possible lipid interactions sites on PC2. We propose that PC2 has a PIP-binding site close to the equivalent vanilloid/lipid-binding site in the TRPV1 channel. A 3.0 Å cryoelectron microscopy map reveals a binding site for cholesterol on PC2. Cholesterol interactions with the channel at this site are further characterized by MD simulations. These results help to position PC2 within an emerging model of the complex roles of lipids in the regulation and organization of ciliary membranes.


2017 ◽  
Author(s):  
E. Barreto-Ojeda ◽  
V. Corradi ◽  
R.-X. Gu ◽  
D.P. Tieleman

AbstractP-glycoprotein (P-gp) exports a broad range of dissimilar compounds, including drugs, lipids and lipid-like molecules. Due to its substrate promiscuity, P-gp is a key player in the development of cancer multidrug resistance (MDR). Although P-gp is one of the most studied members of ABC-transporters, the mechanism of how its substrates access the cavity remains unclear. In this work, we performed coarse-grained (CG) molecular dynamics (MD) simulations to explore possible pathways of lipid-uptake in the inward-facing conformation of P-gp embedded in bilayers with different PC:PE lipid ratios. Our results show that in the inward facing orientation only lipids from the lower leaflet are taken up by the transporter. We identify positively charged residues at the portals of P-gp that favor lipid entrance to the cavity, as well as lipid binding sites, in good agreement with previous experimental studies. Our results show no selectivity for PC vs. PE lipids. We offer several examples of lipid uptake-pathways for PC and PE lipids that help to elucidate the molecular mechanism of substrate-uptake in P-gp.


Life ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 98 ◽  
Author(s):  
Carlos Navarro-Paya ◽  
Maximo Sanz-Hernandez ◽  
Alfonso De Simone

The membrane binding by α-synuclein (αS), a presynaptic protein whose aggregation is strongly linked with Parkinson’s disease, influences its biological behavior under functional and pathological conditions. This interaction requires a conformational transition from a disordered-unbound to a partially helical membrane-bound state of the protein. In the present study, we used enhanced coarse-grained MD simulations to characterize the sequence and conformational determinants of the binding to synaptic-like vesicles by the N-terminal region of αS. This region is the membrane anchor and is of crucial importance for the properties of the physiological monomeric state of αS as well as for its aberrant aggregates. These results identify the key factors that play a role in the binding of αS with synaptic lipid bilayers in both membrane-tethered and membrane-locked conformational states.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ronak Y. Patel ◽  
Petety V. Balaji

Glycolipids are important constituents of biological membranes, and understanding their structure and dynamics in lipid bilayers provides insights into their physiological and pathological roles. Experimental techniques have provided details into their behavior at model and biological membranes; however, computer simulations are needed to gain atomic level insights. This paper summarizes the insights obtained from MD simulations into the conformational and orientational dynamics of glycosphingolipids and their exposure, hydration, and hydrogen-bonding interactions in membrane environment. The organization of glycosphingolipids in raft-like membranes and their modulation of lipid membrane structure are also reviewed.


2014 ◽  
Vol 86 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Wataru Shinoda ◽  
Michael L. Klein

Abstract A series of molecular dynamics (MD) simulations has been undertaken to investigate the effective interaction between vesicles including PC (phosphatidylcholine) and PE (phosphatidylethanolamine) lipids using the Shinoda–DeVane–Klein coarse-grained force field. No signatures of fusion were detected during MD simulations employing two apposed unilamellar vesicles, each composed of 1512 lipid molecules. Association free energy of the two stable vesicles depends on the lipid composition. The two PC vesicles exhibit a purely repulsive interaction with each other, whereas two PE vesicles show a free energy gain at the contact. A mixed PC/PE (1:1) vesicle shows a higher flexibility having a lower energy barrier on the deformation, which is caused by lipid sorting within each leaflet of the membranes. With a preformed channel or stalk between proximal membranes, PE molecules contribute to stabilize the stalk. The results suggest that the lipid components forming the membrane with a negative spontaneous curvature contribute to stabilize the stalk between two vesicles in contact.


RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 2047-2055 ◽  
Author(s):  
Eol Han ◽  
Hwankyu Lee

We performed coarse-grained molecular dynamics simulations of antimicrobial peptides PGLa and magainin 2 in lipid bilayers.


2020 ◽  
Author(s):  
Sarah-Beth T. A. Amos ◽  
Thomas C. Schwarz ◽  
Jiye Shi ◽  
Benjamin P. Cossins ◽  
Terry S. Baker ◽  
...  

Abstractα-Synuclein is a presynaptic protein that binds to cell membranes and is linked to Parkinson’s disease (PD). Whilst the normal function of remains α-synuclein remains uncertain, it is thought that oligomerization of the protein on the cell membrane contributes to cell damage. Knowledge of how α-synuclein binds to lipid bilayers is therefore of great interest as a likely first step in the molecular pathophysiology of PD, and may provide insight of the phenotype of PD-promoting mutations. We use coarse-grained and atomistic simulations in conjunction with NMR and cross-linking mass spectrometry studies of α-synuclein bound to anionic lipid bilayers to reveal a break in the helical structure of the NAC region, which may give rise to subsequent oligomer formation. Coarse-grained simulations of α-synuclein show that the interhelical region leads recognition and binding to both POPG and mixed composition bilayers and identifies important protein-lipid contacts, including those in the region between the two helices in the folded structure. We extend these simulations with all-atom simulations of the initial binding event to reveal details of the time-progression of lipid binding. We present secondary structure analysis that reveals points of possible β-strand formation in the structure, and investigate intramolecular contacts with simulations and mass-spectrometry crosslinking. Additionally we show how Markov state models can be used to investigate possible conformational changes of membrane bound α-synuclein in the NAC region, and we extract representative structures. These structural insights will aid the design and development of novel therapeutic approaches.


2021 ◽  
Author(s):  
Nidhin Thomas ◽  
Ashutosh Agrawal

Lipid bilayers behave as 2D dielectric materials that undergo polarization and deformation in the presence of an electric field. This effect has been previously modeled by continuum theories which assume a polarization field oriented normal to the membrane surface. However, the molecular architecture of the lipids reveals that the heqadgroup dipoles are primarily oriented tangential to the membrane surface. Here, we perform atomistic and coarse-grained molecular dynamics simulations to quantify the in-plane polarization undergone by a flat bilayer and a spherical vesicle in the presence of an applied electric field. We use these predictions to compute an effective in-plane flexoelectric coefficient for four different lipid types. Our findings provide the first molecular proof of the in-plane polarization undergone by lipid bilayers and furnish the material parameter required to quantify membrane-electric field interactions.


2017 ◽  
Vol 114 (43) ◽  
pp. E8977-E8986 ◽  
Author(s):  
Yosuke Senju ◽  
Maria Kalimeri ◽  
Essi V. Koskela ◽  
Pentti Somerharju ◽  
Hongxia Zhao ◽  
...  

The actin cytoskeleton powers membrane deformation during many cellular processes, such as migration, morphogenesis, and endocytosis. Membrane phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], regulate the activities of many actin-binding proteins (ABPs), including profilin, cofilin, Dia2, N-WASP, ezrin, and moesin, but the underlying molecular mechanisms have remained elusive. Moreover, because of a lack of available methodology, the dynamics of membrane interactions have not been experimentally determined for any ABP. Here, we applied a combination of biochemical assays, photobleaching/activation approaches, and atomistic molecular dynamics simulations to uncover the molecular principles by which ABPs interact with phosphoinositide-rich membranes. We show that, despite using different domains for lipid binding, these proteins associate with membranes through similar multivalent electrostatic interactions, without specific binding pockets or penetration into the lipid bilayer. Strikingly, our experiments reveal that these proteins display enormous differences in the dynamics of membrane interactions and in the ranges of phosphoinositide densities that they sense. Profilin and cofilin display transient, low-affinity interactions with phosphoinositide-rich membranes, whereas F-actin assembly factors Dia2 and N-WASP reside on phosphoinositide-rich membranes for longer periods to perform their functions. Ezrin and moesin, which link the actin cytoskeleton to the plasma membrane, bind membranes with very high affinity and slow dissociation dynamics. Unlike profilin, cofilin, Dia2, and N-WASP, they do not require high “stimulus-responsive” phosphoinositide density for membrane binding. Moreover, ezrin can limit the lateral diffusion of PI(4,5)P2 along the lipid bilayer. Together, these findings demonstrate that membrane-interaction mechanisms of ABPs evolved to precisely fulfill their specific functions in cytoskeletal dynamics.


Sign in / Sign up

Export Citation Format

Share Document