Baroreflex Setting and Sensitivity after Acute and Chronic Nicardipine Therapy

1984 ◽  
Vol 66 (2) ◽  
pp. 233-235 ◽  
Author(s):  
M. A. Young ◽  
R. D. S. Watson ◽  
W. A. Littler

1. Intra-arterial pressure, baroreflex sensitivity and the baroreflex set point were measured in eight patients with essential hypertension during a control period and then after acute treatment (2 h after a 30 mg oral dose) and after chronic treatment (at least 2 months) with nicardipine hydrochloride, a calcium channel antagonist. 2. Mean intra-arterial blood pressure fell after the acute treatment from 130 ± 14 (sd) control to 118 ± 11 mmHg, P<0.05, and after chronic treatment to 112 ± 19 mmHg, P<0.05. Heart rate increased from 72 ± 11 control to 81 ± 16 beats/min, P<0.05, during acute treatment indicating activation of the baroreflex control mechanism, but returned to control values with chronic treatment (72 ± 11 control vs 69 ± 9 beats/min chronic), indicating a significant shift to the left of the baroreflex set point. There was no change in baroreflex sensitivity after either acute or chronic treatment (control 4.7, acute 4.3, chronic 5.1 ms/mmHg, P not significant for all values). 3. Nicardipine significantly reduces mean intraarterial pressure both acutely and chronically; the latter is associated with a return of the heart rate to control values due to resetting of the baroreflex control mechanism.

1979 ◽  
Vol 57 (3) ◽  
pp. 241-247 ◽  
Author(s):  
R. D. S. Watson ◽  
T. J. Stallard ◽  
W. A. Littler

1. Sensitivity of the sino-aortic baroreflex was investigated before and after acute (23 patients) and chronic (23 patients) β-adrenoreceptor antagonism in patients with essential hypertension. 2. Sensitivity was inversely related to age (r = −0·60) and systolic blood pressure (r = −0·46); a positive relationship was noted between sensitivity and initial pulse intervals (r = 0·40). 3. Sensitivity increased significantly in patients less than 40 years of age after chronic treatment. No change occurred after acute treatment or in older patients treated chronically. 4. The fall in ambulatory intra-arterial blood pressure after chronic treatment was unrelated to alteration of baroreflex sensitivity.


2002 ◽  
Vol 96 (5) ◽  
pp. 1214-1222 ◽  
Author(s):  
Jong S. Lee ◽  
Don Morrow ◽  
Michael C. Andresen ◽  
Kyoung S. K. Chang

Background Isoflurane inhibits baroreflex control of heart rate (HR) by poorly understood mechanisms. The authors examined whether suprapontine central nervous system cardiovascular regulatory sites are required for anesthetic depression. Methods The effects of isoflurane (1 and 2 rat minimum alveolar concentration [MAC]) on the baroreflex control of HR were determined in sham intact and midcollicular-transected decerebrate rats. Intravenous phenylephrine (0.2-12 microg/kg) and nitroprusside (1-60 microg/kg) were used to measure HR responses to peak changes in mean arterial pressure (MAP). Sigmoidal logistic curve fits to HR-MAP data assessed baroreflex sensitivity (HR/MAP), HR range, lower and upper HR plateau, and MAP at half the HR range (BP50). Four groups (two brain intact and two decerebrate) were studied before, during, and after isoflurane. To assess sympathetic and vagal contributions to HR baroreflex, beta-adrenoceptor (1 mg/kg atenolol) or muscarinic (0.5 mg/kg methyl atropine) antagonists were administered systemically. Results Decerebration did not alter resting MAP and HR or baroreflex parameters. Isoflurane depressed baroreflex slope and HR range in brain-intact and decerebrate rats. In both groups, 1 MAC reduced HR range by depressing peak reflex tachycardia. Maximal reflex bradycardia during increases in blood pressure was relatively preserved. Atenolol during 1 MAC did not alter maximum reflex tachycardia. In contrast, atropine during 1 MAC fully blocked reflex bradycardia. Therefore, 1 MAC predominantly depresses sympathetic components of HR baroreflex. Isoflurane at 2 MAC depressed both HR plateaus and decreased BP50 in both groups. Conclusions Isoflurane depresses HR baroreflex control by actions that do not require suprapontine central nervous system sites. Isoflurane actions seem to inhibit HR baroreflex primarily by the sympathetic nervous system.


2006 ◽  
Vol 290 (4) ◽  
pp. R1027-R1034 ◽  
Author(s):  
Andréia C. Alzamora ◽  
Robson A. S. Santos ◽  
Maria J. Campagnole-Santos

We determined the effect of microinjection of ANG-(1–7) and ANG II into two key regions of the medulla that control the circulation [rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively)] on baroreflex control of heart rate (HR) in anesthetized rats. Reflex bradycardia and tachycardia were induced by increases and decreases in mean arterial pressure produced by intravenous phenylephrine and sodium nitroprusside, respectively. The pressor effects of ANG-(1–7) and ANG II (25 pmol) after RVLM microinjection (11 ± 0.8 and 10 ± 2 mmHg, respectively) were not accompanied by consistent changes in HR. In addition, RVLM microinjection of these angiotensin peptides did not alter the bradycardic or tachycardic component of the baroreflex. CVLM microinjections of ANG-(1–7) and ANG II produced hypotension (−11 ± 1.5 and −11 ± 1.9 mmHg, respectively) that was similarly not accompanied by significant changes in HR. However, CVLM microinjections of angiotensins induced differential changes in the baroreflex control of HR. ANG-(1–7) attenuated the baroreflex bradycardia (0.26 ± 0.06 ms/mmHg vs. 0.42 ± 0.08 ms/mmHg before treatment) and facilitated the baroreflex tachycardia (0.86 ± 0.19 ms/mmHg vs. 0.42 ± 0.10 ms/mmHg before treatment); ANG II produced the opposite effect, attenuating baroreflex tachycardia (0.09 ± 0.06 ms/mmHg vs. 0.31 ± 0.07 ms/mmHg before treatment) and facilitating the baroreflex bradycardia (0.67 ± 0.16 ms/mmHg vs. 0.41 ± 0.05 ms/mmHg before treatment). The modulatory effect of ANG II and ANG-(1–7) on baroreflex sensitivity was completely abolished by peripheral administration of methylatropine. These results suggest that ANG II and ANG-(1–7) at the CVLM produce a differential modulation of the baroreflex control of HR, probably through distinct effects on the parasympathetic drive to the heart.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 727-727
Author(s):  
Ovidiu Baltatu ◽  
Ben J Janssen ◽  
Ralph Plehm ◽  
Detlev Ganten ◽  
Michael Bader

P191 The brain renin-angiotensin system (RAS) system may play a functional role in the long-term and short-term control of blood pressure (BPV) and heart rate variability (HRV). To study this we recorded in transgenic rats TGR(ASrAOGEN) with low brain angiotensinogen levels the 24-h variation of BP and HR during basal and hypertensive conditions, induced by a low-dose s.c. infusion of angiotensin II (Ang II, 100 ng/kg/min) for 7 days. Cardiovascular parameters were monitored by telemetry. Short-term BPV and HRV were evaluated by spectral analysis and as a measure of baroreflex sensitivity the transfer gain between the pressure and heart rate variations was calculated. During the Ang II infusion, in SD but not TGR(ASrAOGEN) rats, the 24-h rhythm of BP was inverted (5.8 ± 2 vs. -0.4 ± 1.8 mm Hg/group of day-night differences of BP, p< 0.05, respectively). In contrast, in both the SD and TGR(ASrAOGEN) rats, the 24-h HR rhythms remained unaltered and paralleled those of locomotor activity. The increase of systolic BP was significantly reduced in TGR(ASrAOGEN) in comparison to SD rats as previously described, while the HR was not altered in TGR(ASrAOGEN) nor in SD rats. The spectral index of baroreflex sensitivity (FFT gain between 0.3-0.6 Hz) was significantly higher in TGR(ASrAOGEN) than SD rats during control (0.71 ± 0.1 vs. 0.35 ± 0.06, p<0.05), but not during Ang II infusion (0.6 ± 0.07 vs. 0.4 ± 0.1, p>0.05). These results demonstrate that the brain RAS plays an important role in mediating the effects of Ang II on the circadian variation of BP. Furthermore these data are consistent with the view that the brain RAS modulates baroreflex control of HR in rats, with AII having an inhibitory role.


1990 ◽  
Vol 69 (3) ◽  
pp. 962-967 ◽  
Author(s):  
J. T. Sullebarger ◽  
C. S. Liang ◽  
P. D. Woolf ◽  
A. E. Willick ◽  
J. F. Richeson

Phenylephrine (PE) bolus and infusion methods have both been used to measure baroreflex sensitivity in humans. To determine whether the two methods produce the same values of baroreceptor sensitivity, we administered intravenous PE by both bolus injection and graded infusion methods to 17 normal subjects. Baroreflex sensitivity was determined from the slope of the linear relationship between the cardiac cycle length (R-R interval) and systolic arterial pressure. Both methods produced similar peak increases in arterial pressure and reproducible results of baroreflex sensitivity in the same subjects, but baroreflex slopes measured by the infusion method (9.9 +/- 0.7 ms/mmHg) were significantly lower than those measured by the bolus method (22.5 +/- 1.8 ms/mmHg, P less than 0.0001). Pretreatment with atropine abolished the heart rate response to PE given by both methods, whereas plasma catecholamines were affected by neither method of PE administration. Naloxone pretreatment exaggerated the pressor response to PE and increased plasma beta-endorphin response to PE infusion but had no effect on baroreflex sensitivity. Thus our results indicate that 1) activation of the baroreflex by the PE bolus and infusion methods, although reproducible, is not equivalent, 2) baroreflex-induced heart rate response to a gradual increase in pressure is less than that seen with a rapid rise, 3) in both methods, heart rate response is mediated by the vagus nerves, and 4) neither the sympathetic nervous system nor the endogenous opiate system has a significant role in mediating the baroreflex control of heart rate to a hypertensive stimulus in normal subjects.


1996 ◽  
Vol 270 (6) ◽  
pp. R1361-R1370 ◽  
Author(s):  
J. L. Liu ◽  
H. Murakami ◽  
I. H. Zucker

Recent data suggest that nitric oxide (NO) plays a role in the modulation of sympathetic nerve activity and baroreflex sensitivity. Most of these studies have been carried out in anesthetized preparations, and little if any comparison has been made on the relative role of NO on the baroreflex control of heart rate and sympathetic nerve activity. In the present studies, the effect of the NO synthase inhibitor NG-nitro-L-arginine (L-NNA) on the baroreflex control of heart rate (HR) and renal sympathetic nerve activity (RSNA) were investigated in conscious, instrumented rabbits. Intravenous bolus injections of 13 mg/kg of L-NNA decreased baseline HR (from 205.0 +/- 6.0 to 145.5 +/- 8.2 beats/min; P < 0.05) without significant changes in mean arterial pressure (MAP) and RSNA. L-NNA significantly reduced the lower plateau of the HR-MAP curves and increased the sensitivities of baroreflex control of HR and RSNA. L-Arginine (600 mg/kg i.v.) but not D-arginine reversed the above effects. The effects of L-NNA on baseline HR were not completely blocked by metoprolol (2 mg/kg) or by atropine (0.2 mg/kg). After pretreatment with metoprolol, baroreflex sensitivity was reduced and L-NNA increased baroreflex sensitivity back to the control level. After pretreatment with atropine, L-NNA still reduced the lower plateau but did not significantly affect baroreflex sensitivity. L-NNA increased the HR responses but not the RSNA response to electrical stimulation of the aortic nerve in chloralose-anesthetized, sinoaortic-denervated (SAD) rabbits. L-NNA had no effect on the HR response to right vagal stimulation. In both conscious intact and SAD rabbits, L-NNA did not increase baseline RSNA. These results suggest that endogenous NO decreases baroreflex control of HR and RSNA. Both sympathetic and parasympathetic components play a role in the effects of NO on the baroreflex control of HR. The effects of NO in the central nervous system play a more important role in the baroreflex control of HR than of RSNA.


2007 ◽  
Vol 103 (4) ◽  
pp. 1284-1289 ◽  
Author(s):  
Jian Cui ◽  
Sylvain Durand ◽  
Craig G. Crandall

Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subjects during both normothermic and skin surface cooling conditions, while baroreflex control of MSNA and heart rate were assessed during rapid pharmacologically induced changes in arterial blood pressure. Skin surface cooling decreased mean skin temperature (34.9 ± 0.2 to 29.8 ± 0.6°C; P < 0.001) and increased mean arterial blood pressure (85 ± 2 to 93 ± 3 mmHg; P < 0.001) without changing MSNA ( P = 0.47) or heart rate ( P = 0.21). The slope of the relationship between MSNA and diastolic blood pressure during skin surface cooling (−3.54 ± 0.29 units·beat−1·mmHg−1) was not significantly different from normothermic conditions (−2.94 ± 0.21 units·beat−1·mmHg−1; P = 0.19). The slope depicting baroreflex control of heart rate was also not altered by skin surface cooling. However, skin surface cooling shifted the “operating point” of both baroreflex curves to high arterial blood pressures (i.e., rightward shift). Resetting baroreflex curves to higher pressure might contribute to the elevations in orthostatic tolerance associated with skin surface cooling.


2002 ◽  
Vol 26 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Theresa L. O’Donaughy ◽  
Thomas C. Resta ◽  
Benjimen R. Walker

We have developed a laboratory exercise that demonstrates arterial baroreflex control of heart rate (HR) in the conscious unrestrained rat, incorporating graduate level physiological topics as well as a hands-on exposure to conscious animal research. This demonstration utilizes rats chronically instrumented to measure cardiac output (CO), HR, and arterial blood pressure in response to agents that raise or lower blood pressure. The HR response to progressive increases or decreases in blood pressure is recorded, and a baroreflex curve is generated by plotting mean arterial blood pressure (MABP) vs. HR. Observation of altered CO allows for discussion of the relationship between MAP, CO, HR, stroke volume, and total peripheral resistance. Administration of arginine vasopressin demonstrates the ability of this hormone to alter the sensitivity of the baroreflex. Throughout the demonstration, students answer questions from a handout about general cardiovascular physiology, specific pathways of agonists, and the baroreflex system, encouraging group and individual critical analysis of the results. Interpretation of the data reemphasizes lecture material and allows students to observe the baroreflex response in a physiological setting.


1998 ◽  
Vol 76 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Mahmoud M El-Mas ◽  
Abdel A Abdel-Rahman

In previous studies, we have shown that the baroreflex control of heart rate is significantly attenuated in females compared with age-matched males. This study investigated the role of estrogen in the modulation of baroreflex function in conscious unrestrained rats. Baroreflex-mediated decreases in heart rate in response to increments in blood pressure evoked by phenylephrine were evaluated in conscious freely moving male and female Sprague-Dawley rats as well as in ovariectomized rats. The effect of a 2-day 17 beta -estradiol (50 µg ·kg-1 ·day-1, s.c.) or vehicle treatment on baroreflex sensitivity was investigated in ovariectomized rats. Intravenous bolus doses of phenylephrine (1-16 µg/kg) elicited dose-dependent pressor and bradycardic responses in all groups of rats. Regression analysis of the baroreflex curves relating increments in blood pressure to the associated heart rate responses revealed a significantly (p < 0.05) smaller baroreflex sensitivity in female compared with male rats (-1.22 ± 0.07 and -1.85 ± 0.15 beats ·min-1 ·mmHg-1, respectively), suggesting an attenuated baroreflex function in females. In age-matched ovariectomized rats, baroreflex sensitivity showed further reduction (-0.93 ± 0.02 beats ·min-1 ·mmHg-1). Treatment of ovariectomized rats with 17 beta -estradiol significantly (p < 0.05) enhanced the baroreflex sensitivity (-1.41 ± 0.16 beats ·min-1 ·mmHg-1) to a level that was slightly higher than that of sham-operated female rats. Furthermore, baroreflex sensitivity of ovariectomized estradiol-treated rats was not significantly different from that of age-matched male rats. The vehicle, on the other hand, had no effect on baroreflex sensitivity of ovariectomized rats. These data support our earlier findings that sexual dimorphism exists in baroreflex control of heart rate. More importantly, the present study provides experimental evidence that suggests a facilitatory role for estrogen in the modulation of baroreflex function.Key words: rat, gender, baroreflex sensitivity, 17 beta -estradiol, ovariectomy.


Sign in / Sign up

Export Citation Format

Share Document