A comparison of the structural integrity of several commonly used preparations of rat small intestine in vitro

1987 ◽  
Vol 73 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Jane A. Plumb ◽  
David Burston ◽  
Terry G. Baker ◽  
Michael L. G. Gardner

1. The structural integrities of various preparations of rat small intestine for the study of absorption in vitro have been compared after incubation or perfusion. 2. Perfused intestines removed from anaesthetized rats, and thus never deprived of a supply of oxygen, maintain their structural integrity even after perfusion for 1 h provided that a Krebs–Henseleit bicarbonate perfusate is used. However, intestines removed from freshly killed rats show severe villus disruption and oedema after perfusion for only 20 min. 3. Extensive damage to both crypts and villi is observed in everted sacs of small intestine incubated for 20 min, regardless of the buffer system used. Intestinal rings show damage at the tips of the villi after incubation for 2 min, but otherwise remain morphologically intact; this damage is progressive with time. 4. It is concluded that the exact mode of preparation of intestinal tissue is critical for preservation of structural and functional integrity and that this is especially important in quantitative studies on transport processes. Further, it is recommended that routine monitoring of the integrity of intestinal preparations in vitro is desirable and that histological assessment is an appropriate technique.

1975 ◽  
Vol 34 (2) ◽  
pp. 291-296 ◽  
Author(s):  
G. Raczyński ◽  
M. Snochowski ◽  
S. Buraczewski

1. A study was made of the metabolism of ɛ-(γ-L-glutamyl)-L[4, 5-3H]lysine (GL) in the rat.2. The compound was largely absorbed from the intestine and metabolized. Labelled lysine was incorporated into blood proteins.3. In an in vitro experiment with everted sacs of rat small intestine, GL passed through the intestinal wall unchanged.4. The results of comparative tests using homogenates of different body tissues indicated that the kidneys were particularly active in hydrolysing GL. Their activity was nine times greater than that of the liver and eighteen times greater than that of the small intestine.


1979 ◽  
Vol 57 (6) ◽  
pp. 529-534 ◽  
Author(s):  
M. L. G. Gardner ◽  
Jane A. Plumb

1. Hydrolase activities against three dipeptides were measured in mucosal cytoplasm in unperfused intestines and in mucosal cytoplasm, luminal effluents and serosal secretions after perfusion in vitro and in vivo for 1 h. Intestines in vitro were prepared both from anaesthetized rats and from freshly killed rats. 2. Only 0·6–1·9% of the initial cytoplasmic activity was recovered in the luminal effluent when intestines in vitro were prepared from anaesthetized rats. Recoveries in luminal effluents were similar (1·3–3·3%) during perfusion in vivo. 3. Losses of dipeptidases into the luminal effluent were four to eight times greater when intestines in vitro were prepared from freshly killed animals. 4. Similar losses of dipeptidases into the secretion on to the serosal surface were observed; they too were much greater when intestines were prepared from freshly killed animals. 5. Small losses of mucosal DNA during perfusion were also observed; however, losses of cytoplasmic peptidases were consistently slightly greater. 6. Enzyme loss therefore probably occurs both by sloughing of whole cells and by a more specific process which is greatly influenced by experimental procedure. Caution is necessary in the interpretation of peptide transport experiments in vitro, although the possibility that intraluminal hydrolysis is of physiological significance must not be excluded.


1984 ◽  
Vol 219 (3) ◽  
pp. 1027-1035 ◽  
Author(s):  
G L Kellett ◽  
A Jamal ◽  
J P Robertson ◽  
N Wollen

The effect of acute changes in insulin concentrations in vivo on the absorption, transport and metabolism of glucose by rat small intestine in vitro was investigated. Within 2 min of the injection of normal anaesthetized rats with anti-insulin serum, lactate production and glucose metabolism were respectively diminished to 28% and 21% of normal and the conversion of glucose into lactate became quantitative. These changes correlated with the inhibition of two mucosal enzymes, namely the insulin-sensitive enzyme pyruvate dehydrogenase, and phosphofructokinase, which was shown by cross-over measurements to be the rate-limiting enzyme of glycolysis in mucosa. The proportion of glucose translocated unchanged from the luminal perfusate to the serosal medium was simultaneously increased from 45% to 80%. All the changes produced by insulin deficiency were completely reversed with 2 min when antiserum was neutralized by injection of insulin in vivo. The absorption and transport of 3-O-methylglucose were unaffected by insulin. It is concluded that glucose metabolism in rat small intestine is subject to short-term regulation by insulin in vivo and that glucose absorption and transport are regulated indirectly in response to changes in metabolism. Moreover, transport and metabolism compensate in such a way as to deliver the maximal ‘effective’ amount of glucose to the blood, whether as glucose itself or as lactate for hepatic gluconeogenesis.


1977 ◽  
Vol 164 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Penelope J. Pritchard ◽  
John W. Porteous

1. Conditions of incubation of everted sacs of rat small intestine were selected to ensure that absorption of d-glucose by mucosal tissue from the incubation medium, intracellular metabolism of the absorbed glucose and transport of glucose through the intact intestinal tissue proceeded linearly with respect to time of incubation within stated time intervals. 2. Under these experimental conditions, steady intracellular concentrations of glucose and lactate were demonstrated. 3. The quantitative translocational and metabolic fate of absorbed glucose was determined under these steady-state conditions. About 25% of glucose absorbed from the external mucosal solution was accumulated (temporarily) within mucosal tissue and about 25% transported through the intact tissue into the external serosal solution; the remainder (about 50%) of the absorbed glucose was metabolized, 90% to lactate and 10% to CO2. Concomitant respiration rates were comparable with those reported for several other preparations of intestine and were stoicheiometrically in excess of the O2 metabolism required to account for the production of CO2 from the absorbed glucose. 4. Water transport through the everted sacs proceeded at an optimum rate under the experimental conditions selected. 5. Some other observations are recorded which influenced the design of the experiments and the interpretation of results; these include the initial physiological state of the animal, the anaesthetic used and the ionic composition of the incubation medium.


1979 ◽  
Vol 41 (1) ◽  
pp. 47-51 ◽  
Author(s):  
D. F. Evered ◽  
F. Sadoogh-Abasian

1. The disaccharide lactulose (galactosyl-β-1,4-fructose) was poorly absorbed from rat small intestine in vitro and human mouth in vivo.2. These results confirm indirect clinical evidence of poor absorption from the intestine.3. The presence of calcium ions, or absence of sodium ions, had no effect on lactulose absorption from the buccal cavity.4. The presence of ouabain, or absence of Na+, did not decrease the absorption of lactulose from small intestine.5. It is thought that the mode of transport, in both instances, is by passive diffusion with the concentration gradient.


1986 ◽  
Vol 14 (2) ◽  
pp. 299-300
Author(s):  
JOHN E. LAWRENCE ◽  
DEREK F. EVERED

1989 ◽  
Vol 257 (4) ◽  
pp. G489-G495 ◽  
Author(s):  
H. Daniel ◽  
C. Fett ◽  
A. Kratz

The intervillous pH profiles along the crypt villus axis in different regions of the rat small intestine were measured in vitro by using pH-sensitive liquid ion-exchanger microelectrodes. A characteristic pH profile was observed in the duodenum and jejunum. A region of low pH was detected in the upper parts of the villi (pH 6.65 +/- 0.06 to 6.85 +/- 0.07), whereas pH at the villus base was always higher. In the ileum no gradient was observed (pH 7.26 +/- 0.05 to 7.31 +/- 0.05). Preincubation of the tissue in situ with 10 mM theophylline for 1 h caused an increase in the villus base pH in the jejunum (pH 7.24 +/- 0.04) and ileum (7.44 +/- 0.04) followed by a subsequent increase of the pH in the upper part of the villi. These results indicate that the low pH in the upper intervillous space may be related to H+ secretion occurring from the mature enterocytes, whereas the crypt cells may secrete a rather neutral or slightly alkaline fluid. Alkaline secretion from the crypts may be increased by theophylline, which changes the levels of cyclic nucleotides in the mucosa.


1975 ◽  
Vol 228 (5) ◽  
pp. 1409-1414
Author(s):  
S Mishkin ◽  
M Yalovsky ◽  
JI Kessler

The uptake and esterification of micellar [3-H]oleate and [14-C] palmitate were uniform along the entire length of the small intestine in vivo. Fatty acids (FA) radioactivity taken up by the small intestine could be described in terms of four functionally distinct compartments analogous to those described in vitro. The KRP-extractable compartment (KEC) and albumin-extractable compartment (AEC) contained reversibly adherent unesterified FA radioactivity, while the tissue free and esterified FA compartments contained irreversibly bound radioactivity. Wheras 27% and 63% of FA uptake were reversibly bound in the KEC and AEC by the most proximal and most distal regions of the small intestine in vitro (15), less than 10% was contained in these compartments in vivo, independent of location. Linear inverse relationships were found betweeen tissue FA esterification and proportion of FA radioactivity present in the KEC,AEC, and the tissue free FA compartment in vivo. These observations allow for the possibility that FA molecules pass through these compartments prior to esterification.


Sign in / Sign up

Export Citation Format

Share Document