Effect of aging on CD11b and CD69 surface expression by vesicular insertion in human polymorphonuclear leucocytes

1999 ◽  
Vol 97 (3) ◽  
pp. 323-329 ◽  
Author(s):  
J. M. NOBLE ◽  
G. A. FORD ◽  
T. H. THOMAS

The exocytosis of intracellular vesicles is an important function of the plasma membrane, which is responsible for hormone secretion, cell surface expression of antigens, ion transporters and receptors, and intracellular and intercellular signalling. Human aging is associated with many physiological and cellular changes, many of which are due to alterations in plasma membrane functioning. Alterations in vesicle externalization with age could account for many of these changes. We investigated whether alterations in vesicle exocytosis occur with increasing age by flow-cytometric determination of CD11b and CD69 expression on the surface of human polymorphonuclear leucocytes (PMN) stimulated with phorbol myristate acetate (PMA), a tumour promoter which binds to and activates protein kinase C (PKC) directly, or with formyl-Met-Leu-Phe (fMLP), which activates PKC indirectly via interactions with a cell surface receptor and G-protein, and subsequent inositol phosphate hydrolysis. Following stimulation with PMA, a decrease in the proportion of PMN expressing CD69 at high levels was observed in elderly compared with young subjects (young, 55.3%; elderly, 43.9%; P = 0.01). No aging-related differences in the proportion of PMN expressing CD11b (young, 73.7%; elderly, 68.4%; P = 0.15), or in the number of molecules of CD69 or CD11b expressed per cell, were observed. Stimulation with fMLP or low PMA concentrations resulted in full CD11b expression but minimal CD69 expression in both young and elderly subjects. Cells which expressed CD69 had no CD11b expression, while those cells expressing CD11b had minimal CD69 expression. Thus the PMA-induced expression of CD11b and CD69 in human PMN represents two separate processes, only one of which is affected in aging. CD11b expression appears to require a lesser degree of PKC stimulation compared with that required for CD69 expression. The age-associated reduction in PMA-stimulated CD69 expression may occur either at or distal to PKC activation. Such a decrease may contribute to the age-associated impairments in PMN function that contribute, in turn, to immunosenescence.

Endocrinology ◽  
2005 ◽  
Vol 146 (11) ◽  
pp. 4727-4736 ◽  
Author(s):  
Mathieu Widmer ◽  
Marc Uldry ◽  
Bernard Thorens

GLUT8 is a high-affinity glucose transporter present mostly in testes and a subset of brain neurons. At the cellular level, it is found in a poorly defined intracellular compartment in which it is retained by an N-terminal dileucine motif. Here we assessed GLUT8 colocalization with markers for different cellular compartments and searched for signals, which could trigger its cell surface expression. We showed that when expressed in PC12 cells, GLUT8 was located in a perinuclear compartment in which it showed partial colocalization with markers for the endoplasmic reticulum but not with markers for the trans-Golgi network, early endosomes, lysosomes, and synaptic-like vesicles. To evaluate its presence at the plasma membrane, we generated a recombinant adenovirus for the expression of GLUT8 containing an extracellular myc epitope. Cell surface expression was evaluated by immunofluorescence microscopy of transduced PC12 cells or primary hippocampal neurons exposed to different stimuli. Those included substances inducing depolarization, activation of protein kinase A and C, activation or inhibition of tyrosine kinase-linked signaling pathways, glucose deprivation, AMP-activated protein kinase stimulation, and osmotic shock. None of these stimuli-induced GLUT8 cell surface translocation. Furthermore, when GLUT8myc was cotransduced with a dominant-negative form of dynamin or GLUT8myc-expressing PC-12 cells or neurons were incubated with an anti-myc antibody, no evidence for constitutive recycling of the transporter through the cell surface could be obtained. Thus, in cells normally expressing it, GLUT8 was associated with a specific intracellular compartment in which it may play an as-yet-uncharacterized role.


2019 ◽  
Author(s):  
Belinda Liu ◽  
Grace Lee ◽  
Jiejun Wu ◽  
Janise Deming ◽  
Chester Kuei ◽  
...  

AbstractUnlike closely related GPCRs, protease-activated receptors (PAR1, PAR2, PAR3, and PAR4) have a predicted signal peptide at their N-terminus, which is encoded by a separate exon, suggesting that the signal peptides of PARs may serve an important and unique function, specific for PARs. In this report, we show that the PAR2 signal peptide, when fused to the N-terminus of IgG-Fc, effectively induced IgG-Fc secretion into culture medium, thus behaving like a classical signal peptide. The presence of PAR2 signal peptide has a strong effect on PAR2 cell surface expression, as deletion of the signal peptide (PAR2ΔSP) led to dramatic reduction of the cell surface expression and decreased responses to trypsin or the synthetic peptide ligand (SLIGKV). However, further deletion of the tethered ligand region (SLIGKV) at the N-terminus rescued the cell surface receptor expression and the response to the synthetic peptide ligand, suggesting that the signal peptide of PAR2 may be involved in preventing PAR2 from intracellular protease activation before reaching the cell surface. Supporting this hypothesis, an Arg36Ala mutation on PAR2ΔSP, which disabled the trypsin activation site, increased the receptor cell surface expression and the response to ligand stimulation. Similar effects were observed when PAR2ΔSP expressing cells were treated with protease inhibitors. Our findings indicated that these is a role of the PAR2 signal peptide in preventing the premature activation of PAR2 from intracellular protease cleavage before reaching the cells surface. The same mechanism may also apply to PAR1, PAR3, and PAR4.


2001 ◽  
Vol 114 (13) ◽  
pp. 2405-2416 ◽  
Author(s):  
Emma J. Blott ◽  
Giovanna Bossi ◽  
Richard Clark ◽  
Marketa Zvelebil ◽  
Gillian M. Griffiths

Fas ligand (FasL) induces apoptosis through its cell surface receptor Fas. T lymphocytes and natural killer cells sort newly synthesised FasL to secretory lysosomes but, in cell types with conventional lysosomes, FasL appears directly on the plasma membrane. Here, we define a proline-rich domain (PRD) in the cytoplasmic tail of FasL that is responsible for sorting FasL to secretory lysosomes. Deletion of this PRD results in cell surface expression of FasL in cells with secretory lysosomes. Positively charged residues flanking the PRD are crucial to the sorting motif and changing the charge of these residues causes mis-sorting to the plasma membrane. In cells with conventional lysosomes, this motif is not recognised and FasL is expressed at the plasma membrane. The FasL PRD is not required for endocytosis in any cell type, as deletion mutants lacking this motif are endocytosed efficiently to the lysosomal compartment. Endogenous FasL cannot internalise extracellular antibody, demonstrating that FasL does not transit the plasma membrane en route to the secretory lysosomes. We propose that an interaction of the PRD of FasL with an SH3-domain-containing protein, enables direct sorting of FasL from the Golgi to secretory lysosomes.


2002 ◽  
Vol 22 (11) ◽  
pp. 3905-3926 ◽  
Author(s):  
Federica Sotgia ◽  
Babak Razani ◽  
Gloria Bonuccelli ◽  
William Schubert ◽  
Michela Battista ◽  
...  

ABSTRACT The relationship between glycosylphosphatidyl inositol (GPI)-linked proteins and caveolins remains controversial. Here, we derived fibroblasts from Cav-1 null mouse embryos to study the behavior of GPI-linked proteins in the absence of caveolins. These cells lack morphological caveolae, do not express caveolin-1, and show a ∼95% down-regulation in caveolin-2 expression; these cells also do not express caveolin-3, a muscle-specific caveolin family member. As such, these caveolin-deficient cells represent an ideal tool to study the role of caveolins in GPI-linked protein sorting. We show that in Cav-1 null cells GPI-linked proteins are preferentially retained in an intracellular compartment that we identify as the Golgi complex. This intracellular pool of GPI-linked proteins is not degraded and remains associated with intracellular lipid rafts as judged by its Triton insolubility. In contrast, GPI-linked proteins are transported to the plasma membrane in wild-type cells, as expected. Furthermore, recombinant expression of caveolin-1 or caveolin-3, but not caveolin-2, in Cav-1 null cells complements this phenotype and restores the cell surface expression of GPI-linked proteins. This is perhaps surprising, as GPI-linked proteins are confined to the exoplasmic leaflet of the membrane, while caveolins are cytoplasmically oriented membrane proteins. As caveolin-1 normally undergoes palmitoylation on three cysteine residues (133, 143, and 156), we speculated that palmitoylation might mechanistically couple caveolin-1 to GPI-linked proteins. In support of this hypothesis, we show that palmitoylation of caveolin-1 on residues 143 and 156, but not residue 133, is required to restore cell surface expression of GPI-linked proteins in this complementation assay. We also show that another lipid raft-associated protein, c-Src, is retained intracellularly in Cav-1 null cells. Thus, Golgi-associated caveolins and caveola-like vesicles could represent part of the transport machinery that is necessary for efficiently moving lipid rafts and their associated proteins from the trans-Golgi to the plasma membrane. In further support of these findings, GPI-linked proteins were also retained intracellularly in tissue samples derived from Cav-1 null mice (i.e., lung endothelial and renal epithelial cells) and Cav-3 null mice (skeletal muscle fibers).


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 660-670 ◽  
Author(s):  
Simon Roy ◽  
Benoît Perron ◽  
Nicole Gallo-Payet

Asparagine-linked glycosylation (N-glycosylation) of G protein-coupled receptors may be necessary for functions ranging from agonist binding, folding, maturation, stability, and internalization. Human melanocortin 2 receptor (MC2R) possesses putative N-glycosylation sites in its N-terminal extracellular domain; however, to date, the role of MC2R N-glycosylation has yet to be investigated. The objective of the present study is to examine whether N-glycosylation is essential or not for cell surface expression and cAMP production in native and MC2R accessory protein (MRAPα, -β, or -dCT)-expressing cells using 293/FRT transfected with Myc-MC2R. Western blot analyses performed with or without endoglycosidase H, peptide:N-glycosidase F or tunicamycin treatments and site-directed mutagenesis revealed that MC2R was glycosylated in the N-terminal domain at its two putative N-glycosylation sites (Asn12-Asn13-Thr14 and Asn17-Asn18-Ser19). In the absence of human MRAP coexpression, N-glycosylation of at least one of the two sites was necessary for MC2R cell surface expression. However, when MRAP was present, cell surface expression of MC2R mutants was either rescued entirely with the N17-18Q (QQNN) and N12-13Q (NNQQ) mutants or partially with the unglycosylated N12-13, 17-18Q (QQQQ) mutant. Functional and expression analyses revealed a discrepancy between wild-type (WT) and QQQQ cell surface receptor levels and maximal cAMP production with a 4-fold increase in EC50 values. Taken together, these results indicate that the absence of MC2R N-glycosylation abrogates to a large extent MC2R cell surface expression in the absence of MRAPs, whereas when MC2R is N-glycosylated, it can be expressed at the plasma membrane without MRAP assistance.


2006 ◽  
Vol 80 (13) ◽  
pp. 6378-6386 ◽  
Author(s):  
Fernando Delgado-Lopez ◽  
Marshall S. Horwitz

ABSTRACT The transmembrane heterotrimer complex 10.4K/14.5K, also known as RID (for “receptor internalization and degradation”), is encoded by the adenovirus E3 region, and it down-regulates the cell surface expression of several unrelated receptors. We recently showed that RID expression correlates with down-regulation of the cell surface expression of the tumor necrosis factor (TNF) receptor 1 in several human cells. This observation provided the first mechanistic explanation for the inhibition of TNF alpha-induced chemokines by RID. Here we analyze the immunoregulatory activities of RID on lipopolysaccharide (LPS) and interleukin-1 beta (IL-1β)-mediated responses. Although both signaling pathways are strongly inhibited by RID, the chemokines up-regulated by IL-1β stimulation are only marginally inhibited. In addition, RID inhibits signaling induced by LPS without affecting the expression of the LPS receptor Toll-like receptor 4, demonstrating that RID need not target degradation of the receptor to alter signal transduction. Taken together, our data demonstrate the inhibitory effect of RID on two additional cell surface receptor-mediated signaling pathways involved in inflammatory processes. The data suggest that RID has intracellular targets that impair signal transduction and chemokine expression without evidence of receptor down-regulation.


2021 ◽  
Vol 14 (10) ◽  
pp. 963
Author(s):  
Mayuka Tameishi ◽  
Takuro Kobori ◽  
Chihiro Tanaka ◽  
Yoko Urashima ◽  
Takuya Ito ◽  
...  

Immune checkpoint blockade (ICB) antibodies targeting programmed cell death ligand-1 (PD-L1) and programmed cell death-1 (PD-1) have improved survival in patients with conventional single agent chemotherapy-resistant gestational trophoblastic neoplasia (GTN). However, many patients are resistant to ICB therapy, the mechanisms of which are poorly understood. Unraveling the regulatory mechanism for PD-L1 expression may provide a new strategy to improve ICB therapy in patients with GTN. Here, we investigated whether the ezrin/radixin/moesin (ERM) family, i.e., a group of scaffold proteins that crosslink actin cytoskeletons with several plasma membrane proteins, plays a role in the regulation of PD-L1 expression using JEG-3 cells, a representative human choriocarcinoma cell line. Our results demonstrate mRNA and protein expressions of ezrin, radixin, and PD-L1, as well as their colocalization in the plasma membrane. Intriguingly, immunoprecipitation experiments revealed that PD-L1 interacted with both ezrin and radixin and the actin cytoskeleton. Moreover, gene silencing of ezrin but not radixin strongly diminished the cell surface expression of PD-L1 without altering the mRNA level. These results indicate that ezrin may contribute to the cell surface localization of PD-L1 as a scaffold protein in JEG-3 cells, highlighting a potential therapeutic target to improve the current ICB therapy in GTN.


2012 ◽  
Vol 11 (3) ◽  
pp. 1475-1484 ◽  
Author(s):  
Michael P. Weekes ◽  
Robin Antrobus ◽  
Suzanne Talbot ◽  
Simon Hör ◽  
Nikol Simecek ◽  
...  

2013 ◽  
Vol 304 (11) ◽  
pp. G980-G990 ◽  
Author(s):  
S. Lissner ◽  
C.-J. Hsieh ◽  
L. Nold ◽  
K. Bannert ◽  
P. Bodammer ◽  
...  

Electroneutral NaCl absorption in the ileum and colon is mediated by downregulated in adenoma (DRA) (Cl-/HCO3- exchanger; SLC26A3) and Na+/H+ exchanger 3 (NHE3, SLC9A3). Surface expression of transport proteins undergoes basal and regulated recycling by endo- and exocytosis. Expression and activity of DRA in the plasma membrane depend on intact lipid rafts, phosphatidylinositol 3-kinase (PI3-kinase), and the PDZ interaction of DRA. However, it is unknown how the PDZ interaction of DRA affects its trafficking to the cell surface. Therefore, the (re)cycling pathway of DRA was investigated in HEK cells stably expressing enhanced green fluorescent protein (EGFP)-DRA or EGFP-DRA-ETKFminus (a mutant lacking the PDZ interaction motif). Early, late, and recycling endosomes were immunoisolated by precipitating stably transfected mCherry-hemagglutinin (HA)-Rab5a, -7a, or -11a. EGFP-DRA and EGFP-DRA-ETKFminus were equally present in early endosomes. In recycling endosomes, wild-type DRA was preferentially present, whereas, in late endosomes, DRA-ETKF-minus dominated. Correspondingly, EGFP-DRA colocalized with mCherry-HA-Rab11a in recycling endosomes, whereas EGFP-DRA-ETKFminus colocalized with mCherry-HA-Rab7a in late endosomes. Functionally, this different distribution was reflected by a shorter half-life of the mutant DRA. Transient expression of dominant-negative Rab11aS25N inhibited the activity (-17%, P < 0.05) and the cell surface expression of DRA (-30%, P < 0.05). Transient transfection of Rab4a or its dominant-negative mutant Rab4aS22N was without effect and thus excluded participation of the rapid recycling pathway. Taken together, the PDZ interaction of DRA facilitates its movement into Rab11a-positive recycling endosomes, from where it is inserted in the plasma membrane. A scenario emerges where specific PDZ adaptor proteins are present along several compartments of the endocytosis-recycling pathway.


Sign in / Sign up

Export Citation Format

Share Document